返回顶部
首页 > 资讯 > 后端开发 > Python >Python 数据结构之十大经典排序算法一文通关
  • 647
分享到

Python 数据结构之十大经典排序算法一文通关

2024-04-02 19:04:59 647人浏览 泡泡鱼

Python 官方文档:入门教程 => 点击学习

摘要

目录1、冒泡排序算法演示算法步骤算法实现2、选择排序算法演示算法步骤算法实现3、简单插入排序算法演示算法步骤算法实现4、希尔排序算法演示算法步骤算法实现5、归并排序算法演示算法步骤算

一文搞掂十大经典排序算法

今天整理一下十大经典排序算法。

1、冒泡排序

——越小的元素会经由交换慢慢“浮”到数列的顶端

算法演示

img

算法步骤

  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  • 针对所有的元素重复以上的步骤,除了最后一个;
  • 重复步骤1~3,直到排序完成。

算法实现


def bubbleSort(arr):
    for i in range(1, len(arr)):
        for j in range(0, len(arr)-i):
            if arr[j] > arr[j+1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
    return arr

2、选择排序

—— 最小的出来排第一,第二小的出来排第二…

算法演示

img

算法步骤

  • 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  • 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  • 重复第二步,直到所有元素均排序完毕。

算法实现


def selectionSort(arr):
    for i in range(len(arr) - 1):
        # 记录最小数的索引
        minIndex = i
        for j in range(i + 1, len(arr)):
            if arr[j] < arr[minIndex]:
                minIndex = j
        # i 不是最小数时,将 i 和最小数进行交换
        if i != minIndex:
            arr[i], arr[minIndex] = arr[minIndex], arr[i]
    return arr

3、简单插入排序

——通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

算法演示

img

算法步骤

  • 从第一个元素开始,该元素可以认为已经被排序;
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  • 将新元素插入到该位置后;重复步骤2~5。

算法实现


def insertionSort(arr):
    for i in range(len(arr)):
        preIndex = i-1
        current = arr[i]
        while preIndex >= 0 and arr[preIndex] > current:
            arr[preIndex+1] = arr[preIndex]
            preIndex-=1
        arr[preIndex+1] = current
    return arr

4、希尔排序

——希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。

算法演示

img

算法步骤

  • 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
  • 按增量序列个数 k,对序列进行 k 趟排序;
  • 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

算法实现


def shellSort(arr):
    import math
    gap=1
    while(gap < len(arr)/3):
        gap = gap*3+1
    while gap > 0:
        for i in range(gap,len(arr)):
            temp = arr[i]
            j = i-gap
            while j >=0 and arr[j] > temp:
                arr[j+gap]=arr[j]
                j-=gap
            arr[j+gap] = temp
        gap = math.floor(gap/3)
    return arr

5、归并排序

——建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法演示

img

算法步骤

  • 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
  • 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
  • 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
  • 重复步骤 3 直到某一指针达到序列尾;
  • 将另一序列剩下的所有元素直接复制到合并序列尾。

算法实现


def mergeSort(arr):
    import math
    if(len(arr)<2):
        return arr
    middle = math.floor(len(arr)/2)
    left, right = arr[0:middle], arr[middle:]
    return merge(mergeSort(left), mergeSort(right))

def merge(left,right):
    result = []
    while left and right:
        if left[0] <= right[0]:
            result.append(left.pop(0))
        else:
            result.append(right.pop(0));
    while left:
        result.append(left.pop(0))
    while right:
        result.append(right.pop(0));
    return result

6、快速排序

——快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。 快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

算法演示

img

算法步骤

  • 从数列中挑出一个元素,称为 “基准”(pivot);
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

算法实现


def quickSort(arr, left=None, right=None):
    left = 0 if not isinstance(left,(int, float)) else left
    right = len(arr)-1 if not isinstance(right,(int, float)) else right
    if left < right:
        partitionIndex = partition(arr, left, right)
        quickSort(arr, left, partitionIndex-1)
        quickSort(arr, partitionIndex+1, right)
    return arr

def partition(arr, left, right):
    pivot = left
    index = pivot+1
    i = index
    while  i <= right:
        if arr[i] < arr[pivot]:
            swap(arr, i, index)
            index+=1
        i+=1
    swap(arr,pivot,index-1)
    return index-1

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]
   

7、堆排序

——利用堆这种数据结构所设计的一种排序算法

算法演示

img

算法步骤

  • 创建一个堆 H[0……n-1];
  • 把堆首(最大值)和堆尾互换;
  • 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
  • 重复步骤 2,直到堆的尺寸为 1。

算法实现


def buildMaxHeap(arr):
    import math
    for i in range(math.floor(len(arr)/2),-1,-1):
        heapify(arr,i)

def heapify(arr, i):
    left = 2*i+1
    right = 2*i+2
    largest = i
    if left < arrLen and arr[left] > arr[largest]:
        largest = left
    if right < arrLen and arr[right] > arr[largest]:
        largest = right

    if largest != i:
        swap(arr, i, largest)
        heapify(arr, largest)

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]

def heapSort(arr):
    global arrLen
    arrLen = len(arr)
    buildMaxHeap(arr)
    for i in range(len(arr)-1,0,-1):
        swap(arr,0,i)
        arrLen -=1
        heapify(arr, 0)
    return arr

8、计数排序

——作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法演示

img

算法步骤

  • 找出待排序的数组中最大和最小的元素
  • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项
  • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
  • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

算法实现


def countingSort(arr, maxValue):
    bucketLen = maxValue+1
    bucket = [0]*bucketLen
    sortedIndex =0
    arrLen = len(arr)
    for i in range(arrLen):
        if not bucket[arr[i]]:
            bucket[arr[i]]=0
        bucket[arr[i]]+=1
    for j in range(bucketLen):
        while bucket[j]>0:
            arr[sortedIndex] = j
            sortedIndex+=1
            bucket[j]-=1
    return arr

9、桶排序

——桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

算法演示

img

算法步骤

  • 设置一个定量的数组当作空桶;
  • 遍历输入数据,并且把数据一个一个放到对应的桶里去;
  • 对每个不是空的桶进行排序;
  • 从不是空的桶里把排好序的数据拼接起来。

算法实现


function bucketSort(arr, bucketSize) {
    if (arr.length === 0) {
      return arr;
    }
 
    var i;
    var minValue = arr[0];
    var maxValue = arr[0];
    for (i = 1; i < arr.length; i++) {
      if (arr[i] < minValue) {
          minValue = arr[i];                // 输入数据的最小值
      } else if (arr[i] > maxValue) {
          maxValue = arr[i];                // 输入数据的最大值
      }
    }
 
    // 桶的初始化
    var DEFAULT_BUCKET_SIZE = 5;            // 设置桶的默认数量为5
    bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
    var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;  
    var buckets = new Array(bucketCount);
    for (i = 0; i < buckets.length; i++) {
        buckets[i] = [];
    }
 
    // 利用映射函数将数据分配到各个桶中
    for (i = 0; i < arr.length; i++) {
        buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
    }
 
    arr.length = 0;
    for (i = 0; i < buckets.length; i++) {
        insertionSort(buckets[i]);                      // 对每个桶进行排序,这里使用了插入排序
        for (var j = 0; j < buckets[i].length; j++) {
            arr.push(buckets[i][j]);                     
        }
    }
 
    return arr;
}

10、基数排序

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

算法演示

img

算法步骤

  • 取得数组中的最大数,并取得位数;
  • arr为原始数组,从最低位开始取每个位组成radix数组;
  • 对radix进行计数排序(利用计数排序适用于小范围数的特点);

算法实现


var counter = [];
function radixSort(arr, maxDigit) {
    var mod = 10;
    var dev = 1;
    for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
        for(var j = 0; j < arr.length; j++) {
            var bucket = parseInt((arr[j] % mod) / dev);
            if(counter[bucket]==null) {
                counter[bucket] = [];
            }
            counter[bucket].push(arr[j]);
        }
        var pos = 0;
        for(var j = 0; j < counter.length; j++) {
            var value = null;
            if(counter[j]!=null) {
                while ((value = counter[j].shift()) != null) {
                      arr[pos++] = value;
                }
          }
        }
    }
    return arr;
}

到此这篇关于python 数据结构之十大经典排序算法一文通关的文章就介绍到这了,更多相关Python 排序算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Python 数据结构之十大经典排序算法一文通关

本文链接: https://lsjlt.com/news/154582.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Python 数据结构之十大经典排序算法一文通关
    目录1、冒泡排序算法演示算法步骤算法实现2、选择排序算法演示算法步骤算法实现3、简单插入排序算法演示算法步骤算法实现4、希尔排序算法演示算法步骤算法实现5、归并排序算法演示算法步骤算...
    99+
    2024-04-02
  • Python怎么实现十大经典排序算法
    这篇“Python怎么实现十大经典排序算法”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python怎么实现十大经典排序算法...
    99+
    2023-06-29
  • Python 十大经典排序算法实现详解
    目录关于时间复杂度关于稳定性名词解释1、冒泡排序(1)算法步骤(2)动图演示(3)Python 代码2、选择排序(1)算法步骤(2)动图演示(3)Python 代码3、插入排序(1)...
    99+
    2024-04-02
  • C语言数据结构经典10大排序算法刨析
    1、冒泡排序 // 冒泡排序 #include <stdlib.h> #include <stdio.h> // 采用两层循环实现的方法。 // 参数a...
    99+
    2024-04-02
  • C语言数据结构经典10大排序算法实例分析
    今天小编给大家分享一下C语言数据结构经典10大排序算法实例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。1、冒泡排序//...
    99+
    2023-06-29
  • python数据结构的排序算法
    目录十大经典的排序算法 一、交换排序1、冒泡排序(前后比较-交换)2、快速排序(选取一个基准值,小数在左大数在右)二、插入排序1、简单插入排序(逐个插入到前面的有序数中)2、希尔排序(从大范围到小范围进行比...
    99+
    2022-06-02
    python 排序算法 python数据结构
  • C语言数据结构与算法之排序总结(一)
    目录一、前言二、基本概念1.排序2.排序方法的稳定性3.内部和外部排序三、插入类排序1.直接插入排序2.折半插入排序3.希尔排序四、交换类排序1.冒泡排序2.快速排序五、总结比较一、...
    99+
    2024-04-02
  • 数据结构与算法之手撕排序算法
    目录前言为什么要学习排序算法?一.排序的概念及其应用1.1排序的概念1.2排序运用1.3 常见的排序算法二.排序算法分类1.插入排序1.1基本思想:1.2直接插入排序:1.3 希尔排...
    99+
    2023-05-16
    Java数据结构与算法 Java排序算法 数据结构与算法 排序算法
  • 数据结构:一篇拿捏十大排序(超详细版)
    排序的概念: 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i...
    99+
    2023-10-24
    数据结构 排序算法 算法 c++ 数据分析 笔记 深度学习
  • C语言数据结构与算法之排序总结(二)
    目录一、前言二、选择类排序1.简单选择排序2.树形选择排序3.堆选择排序三、归并排序四、分配类排序1.多关键字排序2.链式基数排序五、总结归纳一、前言 之前的排序总结(一)对插入类和...
    99+
    2024-04-02
  • Java数据结构与算法系列精讲之排序算法
    概述 从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章. 冒泡排序 冒泡排序 (Bubble Sort) 是一种简单的排序算法. 它重复地遍历要排序的...
    99+
    2024-04-02
  • java数据结构与算法之快速排序详解
    本文实例讲述了java数据结构与算法之快速排序。分享给大家供大家参考,具体如下:交换类排序的另一个方法,即快速排序。快速排序:改变了冒泡排序中一次交换仅能消除一个逆序的局限性,是冒泡排序的一种改进;实现了一次交换可消除多个逆序。通过一趟排序...
    99+
    2023-05-31
    java 数据结构 算法
  • java数据结构与算法之冒泡排序详解
    本文实例讲述了java数据结构与算法之冒泡排序。分享给大家供大家参考,具体如下:前面文章讲述的排序算法都是基于插入类的排序,这篇文章开始介绍交换类的排序算法,即:冒泡排序、快速排序(冒泡排序的改进)。交换类的算法:通过交换逆序元素进行排序的...
    99+
    2023-05-31
    java 数据结构 算法
  • C语言数据结构之堆排序的优化算法
    目录1.堆排序优化算法1.1建堆的时间复杂度1.1.1 向下调整建堆:O(N)1.1.2 向上调整建堆:O(N*logN)1.2堆排序的复杂度1.2.1原堆排序的时间复杂度...
    99+
    2024-04-02
  • Java数据结构之常见排序算法怎么实现
    这篇文章主要介绍“Java数据结构之常见排序算法怎么实现”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Java数据结构之常见排序算法怎么实现”文章能帮助大家解决问题。注:后续所说的复杂度 log,都...
    99+
    2023-07-04
  • C语言植物大战数据结构希尔排序算法
    目录前言一、插入排序1.排序思路2.单趟排序详细图解3.整体代码4.时间复杂度(1).最坏情况下(2).最好情况下(3).基本有序情况下(重点)5.算法特点二、希尔排序1.希尔从哪个...
    99+
    2024-04-02
  • Java数据结构和算法之冒泡,选择和插入排序算法
    目录1、冒泡排序2、选择排序3、插入排序4、总结1、冒泡排序 这个名词的由来很好理解,一般河水中的冒泡,水底刚冒出来的时候是比较小的,随着慢慢向水面浮起会逐渐增大,这物理规律我不作过...
    99+
    2024-04-02
  • java数据结构与算法之桶排序实现方法详解
    本文实例讲述了java数据结构与算法之桶排序实现方法。分享给大家供大家参考,具体如下:基本思想:假定输入是由一个随机过程产生的[0, M)区间上均匀分布的实数。将区间[0, M)划分为n个大小相等的子区间(桶),将n个输入元素分配到这些桶中...
    99+
    2023-05-31
    java 数据结构 算法
  • 带你了解Java数据结构和算法之高级排序
    目录1、希尔排序①、直接插入排序②、希尔排序图解③、排序间隔选取④、knuth间隔序列的希尔排序算法实现⑤、间隔为2h的希尔排序2、快速排序①、快速排序的基本思路②、快速排序的算法实...
    99+
    2024-04-02
  • Java数据结构之选择排序算法的实现与优化
    目录初识选择排序算法实现优化后的算法实现选择排序 VS 冒泡排序初识选择排序 算法思想[以升序为例]: 第一趟选择排序时,从第一个记录开始,通过n-1次关键字的比较,从第n个记录中选...
    99+
    2023-01-28
    Java实现选择排序算法 Java选择排序算法 Java选择排序
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作