返回顶部
首页 > 资讯 > 后端开发 > GO >GoFrame基于性能测试得知grpool使用场景
  • 210
分享到

GoFrame基于性能测试得知grpool使用场景

2024-04-02 19:04:59 210人浏览 薄情痞子
摘要

目录前言摘要先说结论测试性能代码运行结果总结前言摘要 之前写了一篇 grpool Goroutine池详解 | 协程管理 收到了大家积极的反馈,今天这篇来做一下grpool的性能测试

前言摘要

之前写了一篇 grpool Goroutine池详解 | 协程管理 收到了大家积极的反馈,今天这篇来做一下grpool的性能测试分析,让大家更好的了解什么场景下使用grpool比较好。

先说结论

grpool相比于goroutine更节省内存,但是耗时更长;

原因也很简单:grpool复用了协程,减少了协程的创建和销毁,减少了内存消耗;也因为协程的复用,总的goroutine数量更少,导致耗时更多。

测试性能代码

开启for循环,开启一万个协程,分别使用原生goroutine和grpool执行。

看两者在内存占用和耗时方面的差别。

package main
import (
   "flag"
   "fmt"
   "GitHub.com/gogf/gf/os/grpool"
   "github.com/gogf/gf/os/gtime"
   "log"
   "os"
   "runtime"
   "runtime/pprof"
   "sync"
   "time"
)
func main() {
   //接收命令行参数
   flag.Parse()
   //cpu分析
   cpuProfile()
   //主逻辑
   //demoGrpool()
   demoGoroutine()
   //内存分析
   memProfile()
}
func demoGrpool() {
   start := gtime.TimestampMilli()
   wg := sync.WaitGroup{}
   for i := 0; i < 10000; i++ {
      wg.Add(1)
      _ = grpool.Add(func() {
         var m runtime.MemStats
         runtime.ReadMemStats(&m)
         fmt.Printf("运行中占用内存:%d Kb\n", m.Alloc/1024)
         time.Sleep(time.Millisecond)
         wg.Done()
      })
      fmt.Printf("运行的协程:", grpool.Size())
   }
   wg.Wait()
   fmt.Printf("运行的时间:%v ms \n", gtime.TimestampMilli()-start)
   select {}
}
func demoGoroutine() {
   //start := gtime.TimestampMilli()
   wg := sync.WaitGroup{}
   for i := 0; i < 10000; i++ {
      wg.Add(1)
      go func() {
         //var m runtime.MemStats
         //runtime.ReadMemStats(&m)
         //fmt.Printf("运行中占用内存:%d Kb\n", m.Alloc/1024)
         time.Sleep(time.Millisecond)
         wg.Done()
      }()
   }
   wg.Wait()
   //fmt.Printf("运行的时间:%v ms \n", gtime.TimestampMilli()-start)
}
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
var memprofile = flag.String("memprofile", "", "write memory profile to `file`")
func cpuProfile() {
   if *cpuprofile != "" {
      f, err := os.Create(*cpuprofile)
      if err != nil {
         log.Fatal("could not create CPU profile: ", err)
      }
      if err := pprof.StartcpUProfile(f); err != nil { //监控cpu
         log.Fatal("could not start CPU profile: ", err)
      }
      defer pprof.StopCPUProfile()
   }
}
func memProfile() {
   if *memprofile != "" {
      f, err := os.Create(*memprofile)
      if err != nil {
         log.Fatal("could not create memory profile: ", err)
      }
      runtime.GC()                                      // GC,获取最新的数据信息
      if err := pprof.WriteHeapProfile(f); err != nil { // 写入内存信息
         log.Fatal("could not write memory profile: ", err)
      }
      f.Close()
   }
}

运行结果

组件占用内存耗时
grpool2229 Kb1679 ms
goroutine5835 Kb1258 ms

总结

goframe的grpool节省内存,如果机器的内存不高或者业务场景对内存占用的要求更高,则使用grpool。

如果机器的内存足够,但是对应用的执行时间有更高的追求,就用原生的goroutine。

更多关于GoFrame性能测试grpool使用场景的资料请关注编程网其它相关文章!

您可能感兴趣的文档:

--结束END--

本文标题: GoFrame基于性能测试得知grpool使用场景

本文链接: https://lsjlt.com/news/152066.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作