返回顶部
首页 > 资讯 > 后端开发 > Python >Python并发编程之IO模型
  • 348
分享到

Python并发编程之IO模型

2024-04-02 19:04:59 348人浏览 泡泡鱼

Python 官方文档:入门教程 => 点击学习

摘要

五种io模型 为了更好地了解IO模型,我们需要事先回顾下:同步、异步、阻塞、非阻塞 同步(synchronous) IO异步(asynchronous) IO阻塞(blocking)

五种io模型

为了更好地了解IO模型,我们需要事先回顾下:同步、异步、阻塞、非阻塞

  • 同步(synchronous) IO
  • 异步(asynchronous) IO
  • 阻塞(blocking) IO
  • 非阻塞(non-blocking)IO

五种I/O模型包括:阻塞I/O、非阻塞I/O、信号驱动I/O(不常用)、I/O多路转接、异步I/O。其中,前四个被称为同步I/O。

上五个模型的阻塞程度由低到高为:阻塞I/O > 非阻塞I/O > 多路转接I/O > 信号驱动I/O > 异步I/O,因此他们的效率是由低到高的。

1、阻塞I/O模型

linux中,默认情况下所有的Socket都是blocking,除非特别指定,几乎所有的I/O接口 ( 包括socket接口 ) 都是阻塞型的。

如果所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“连接池”或许可以缓解部分压力,但是不能解决所有问题。总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型也会遇到瓶颈,可以用非阻塞接口来尝试解决这个问题。

2、非阻塞I/O模型

在非阻塞式I/O中,用户进程其实是需要不断的主动询问kernel数据准备好了没有。但是非阻塞I/O模型绝不被推荐。

非阻塞,不等待。比如创建socket对某个地址进行connect、获取接收数据recv时默认都会等待(连接成功或接收到数据),才执行后续操作。 
如果设置setblocking(False),以上两个过程就不再等待,但是会报BlockingIOError的错误,只要捕获即可。

异步,通知,执行完成之后自动执行回调函数或自动执行某些操作(通知)。比如做爬虫中向某个地址baidu。com发送请求,当请求执行完成之后自执行回调函数。

3、多路复用I/O模型(事件驱动)

基于事件循环的异步非阻塞框架:如Twisted框架,scrapy框架(单线程完成并发)。

检测多个socket是否已经发生变化(是否已经连接成功/是否已经获取数据)(可读/可写)IO多路复用作用?

操作系统检测socket是否发生变化,有三种模式:

  • select:最多1024个socket;循环去检测。
  • poll:不限制监听socket个数;循环去检测(水平触发)。
  • epoll:不限制监听socket个数;回调方式(边缘触发)。

python模块:

  • select.select
  • select.epoll

基于IO多路复用+socket非阻塞,实现并发请求(一个线程100个请求) 

import socket
# 创建socket
client = socket.socket()
# 将原来阻塞的位置变成非阻塞(报错)
client.setblocking(False)

# 百度创建连接: 阻塞
try:
    # 执行了但报错了
    client.connect(('www.baidu.com',80))
except BlockingIOError as e:
    pass

# 检测到已经连接成功

# 问百度我要什么?
client.sendall(b'GET /s?wd=alex Http/1.0\r\nhost:www.baidu.com\r\n\r\n')

# 我等着接收百度给我的回复
chunk_list = []
while True:
    # 将原来阻塞的位置变成非阻塞(报错)
    chunk = client.recv(8096) 
    if not chunk:
        break
    chunk_list.append(chunk)

body = b''.join(chunk_list)
print(body.decode('utf-8'))

selectors模块

#服务端
from socket import *
import selectors

sel=selectors.DefaultSelector()
def accept(server_fileobj,mask):
    conn,addr=server_fileobj.accept()
    sel.reGISter(conn,selectors.EVENT_READ,read)

def read(conn,mask):
    try:
        data=conn.recv(1024)
        if not data:
            print('closing',conn)
            sel.unregister(conn)
            conn.close()
            return
        conn.send(data.upper()+b'_SB')
    except Exception:
        print('closing', conn)
        sel.unregister(conn)
        conn.close()



server_fileobj=socket(AF_INET,SOCK_STREAM)
server_fileobj.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server_fileobj.bind(('127.0.0.1',8088))
server_fileobj.listen(5)
server_fileobj.setblocking(False) #设置socket的接口为非阻塞
sel.register(server_fileobj,selectors.EVENT_READ,accept) #相当于网select的读列表里append了一个文件句柄
                                                         #server_fileobj,并且绑定了一个回调函数accept

while True:
    events=sel.select() #检测所有的fileobj,是否有完成wait data的
    for sel_obj,mask in events:
        callback=sel_obj.data #callback=accpet
        callback(sel_obj.fileobj,mask) #accpet(server_fileobj,1)

#客户端
from socket import *
c=socket(AF_INET,SOCK_STREAM)
c.connect(('127.0.0.1',8088))

while True:
    msg=input('>>: ')
    if not msg:continue
    c.send(msg.encode('utf-8'))
    data=c.recv(1024)
    print(data.decode('utf-8'))

4、异步I/O

asyncioPython 3.4版本引入的标准库,直接内置了对异步IO的支持。

asyncio编程模型就是一个消息循环。我们从asyncio模块中直接获取一个EventLoop的引用,然后把需要执行的协程扔到EventLoop中执行,就实现了异步IO。

asyncio实现Hello world代码如下:

import asyncio

@asyncio.coroutine
def hello():
    print("Hello world!")
    # 异步调用asyncio.sleep(1):
    r = yield from asyncio.sleep(1)
    print("Hello again!")

# 获取EventLoop:
loop = asyncio.get_event_loop()
# 执行coroutine
loop.run_until_complete(hello())
loop.close()

@asyncio.coroutine把一个generator标记为coroutine类型,然后,我们就把这个coroutine扔到EventLoop中执行。

hello()会首先打印出Hello world!,然后,yield from语法可以让我们方便地调用另一个generator。由于asyncio.sleep()也是一个coroutine,所以线程不会等待asyncio.sleep(),而是直接中断并执行下一个消息循环。当asyncio.sleep()返回时,线程就可以从yield from拿到返回值(此处是None),然后接着执行下一行语句。

asyncio.sleep(1)看成是一个耗时1秒的IO操作,在此期间,主线程并未等待,而是去执行EventLoop中其他可以执行的coroutine了,因此可以实现并发执行。

我们用Task封装两个coroutine试试:

import threading
import asyncio

@asyncio.coroutine
def hello():
    print('Hello world! (%s)' % threading.currentThread())
    yield from asyncio.sleep(1)
    print('Hello again! (%s)' % threading.currentThread())

loop = asyncio.get_event_loop()
tasks = [hello(), hello()]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()

观察执行过程:

Hello world! (<_MainThread(MainThread, started 140735195337472)>)
Hello world! (<_MainThread(MainThread, started 140735195337472)>)
(暂停约1秒)
Hello again! (<_MainThread(MainThread, started 140735195337472)>)
Hello again! (<_MainThread(MainThread, started 140735195337472)>)

由打印的当前线程名称可以看出,两个coroutine是由同一个线程并发执行的。

如果把asyncio.sleep()换成真正的IO操作,则多个coroutine就可以由一个线程并发执行。

我们用asyncio的异步网络连接来获取sina、sohu和163的网站首页:

import asyncio

@asyncio.coroutine
def wget(host):
    print('wget %s...' % host)
    connect = asyncio.open_connection(host, 80)
    reader, writer = yield from connect
    header = 'GET / HTTP/1.0\r\nHost: %s\r\n\r\n' % host
    writer.write(header.encode('utf-8'))
    yield from writer.drain()
    while True:
        line = yield from reader.readline()
        if line == b'\r\n':
            break
        print('%s header > %s' % (host, line.decode('utf-8').rstrip()))
    # Ignore the body, close the socket
    writer.close()

loop = asyncio.get_event_loop()
tasks = [wget(host) for host in ['www.sina.com.cn', 'www.sohu.com', 'www.163.com']]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()

执行结果如下:

wget www.sohu.com...
wget www.sina.com.cn...
wget www.163.com...
(等待一段时间)
(打印出sohu的header)
www.sohu.com header > HTTP/1.1 200 OK
www.sohu.com header > Content-Type: text/html
...
(打印出sina的header)
www.sina.com.cn header > HTTP/1.1 200 OK
www.sina.com.cn header > Date: Wed, 20 May 2015 04:56:33 GMT
...
(打印出163的header)
www.163.com header > HTTP/1.0 302 Moved Temporarily
www.163.com header > Server: Cdn Cache Server V2.0
...

可见3个连接由一个线程通过coroutine并发完成。

async/await

asyncio提供的@asyncio.coroutine可以把一个generator标记为coroutine类型,然后在coroutine内部用yield from调用另一个coroutine实现异步操作。

为了简化并更好地标识异步IO,从Python 3.5开始引入了新的语法asyncawait,可以让coroutine的代码更简洁易读。

请注意,asyncawait是针对coroutine的新语法,要使用新的语法,只需要做两步简单的替换:

  • @asyncio.coroutine替换为async
  • yield from替换为await

让我们对比一下上一节的代码:

@asyncio.coroutine
def hello():
    print("Hello world!")
    r = yield from asyncio.sleep(1)
    print("Hello again!")

用新语法重新编写如下:

async def hello():
    print("Hello world!")
    r = await asyncio.sleep(1)
    print("Hello again!")

剩下的代码保持不变。

小结

asyncio提供了完善的异步IO支持;

异步操作需要在coroutine中通过yield from完成;

多个coroutine可以封装成一组Task然后并发执行。

到此这篇关于Python并发编程之IO模型的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持编程网。

--结束END--

本文标题: Python并发编程之IO模型

本文链接: https://lsjlt.com/news/151211.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Python并发编程之IO模型
    五种IO模型 为了更好地了解IO模型,我们需要事先回顾下:同步、异步、阻塞、非阻塞 同步(synchronous) IO异步(asynchronous) IO阻塞(blocking)...
    99+
    2024-04-02
  • 并发编程之Java内存模型
    目录一、Java内存模型的基础1.1 并发编程模型的两个关键问题1.2 Java内存模型的抽象结构1.3 从源代码到指令重排序1.4 写缓冲区和内存屏障1.4.1 写缓冲区1.4.2...
    99+
    2024-04-02
  • Golang并发编程之GMP模型详解
    目录0. 简介1. 进程、线程和协程1.1 线程模型2. GMP模型2.1 G2.2 M2.3 P3. 基础调度过程0. 简介 传统的并发编程模型是基于线程和共享内存的同步访问控制的...
    99+
    2023-03-22
    Golang 并发编程 GMP模型 Golang GMP模型 Golang 并发编程
  • Java并发编程之Java内存模型
    目录1、什么是Java的内存模型2、为什么需要Java内存模型3、Java内存模型及操作规范4、Java内存模型规定的原子操作5、Java内存模型同步协议6、Java内存模型的HB法...
    99+
    2024-04-02
  • Python高级编程和异步IO并发编程
    Python高级编程和异步IO并发编程网盘地址:https://pan.baidu.com/s/1eB-BsUacBRhKxh7qXwndMQ 密码: tgba备用地址(腾讯微云):https://share.weiyun.com/5Z3x...
    99+
    2023-01-31
    高级编程 Python IO
  • Python并发编程之未来模块Futures
    目录区分并发和并行并发编程之Futures到底什么是Futures?为什么多线程每次只有一个线程执行?总结不论是哪一种语言,并发编程都是一项非常重要的技巧。比如我们上一章用的爬虫,就...
    99+
    2024-04-02
  • Golang并发编程之GMP模型怎么实现
    本文小编为大家详细介绍“Golang并发编程之GMP模型怎么实现”,内容详细,步骤清晰,细节处理妥当,希望这篇“Golang并发编程之GMP模型怎么实现”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。0. 简介传统...
    99+
    2023-07-05
  • Python中的并发编程模型有哪些?
    Python中的并发编程模型有哪些?- 代码示例在现代计算机系统中,我们通常需要处理多个任务同时运行的情况。并发编程是一种能够让程序同时处理多个任务的编程模式。Python提供了多种并发编程模型,本文将介绍其中的几种,并给出相应的代码示例。...
    99+
    2023-10-22
    Python 并发 并发编程模型
  • Python并发编程之协程
    协程介绍 协程:是单线程下的并发,又称微线程,纤程。协程是一种用户态的轻量级线程,即线程是由用户程序自己控制调度的。 需要强调的是: #1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫...
    99+
    2023-01-30
    Python
  • python并发编程之多线程编程
    一、threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍 二、开启线程的两种方式 方式一: from threading import ...
    99+
    2023-01-31
    之多 线程 python
  • Java并发编程之volatile与JMM多线程内存模型
    目录一、通过程序看现象二、为什么会产生这种现象(JMM模型)?三、MESI 缓存一致性协议 一、通过程序看现象 在开始为大家讲解Java 多线程缓存模型之前,我们先看下面的这一段代码...
    99+
    2024-04-02
  • 并发编程之Java内存模型顺序一致性
    目录1、数据竞争和顺序一致性1.1 Java内存模型规范对数据竞争的定义1.2 JMM对多线程程序的内存一致性做的保证2、顺序一致性内存模型2.1 特性2.2 举例说明顺序一致性模型...
    99+
    2024-04-02
  • python并发编程之多进程
    阅读目录 一 multiprocessing模块介绍 二 Process类的介绍 三 Process类的使用 四 守护进程 一  multiprocessing模块介绍  python中的多线程无法利用多核优势,如果想...
    99+
    2023-01-30
    之多 进程 python
  • Python全栈开发之并发编程
    No.1 线程 什么是多任务 就是操作系统可以同时运行多个任务,就是可以一边用浏览器上网,同时又可以听歌,还能再撩个×××姐,这就是多任务,操作系统会轮流把系统调度到每个核心上去执行 并发和并行 并发是指任务数多余cpu核数,通过操作系统的...
    99+
    2023-01-31
    Python
  • 并发编程之Java内存模型volatile的内存语义
    1、volatile的特性 理解volatile特性的一个好办法是把对volatile变量的单个读/写,看成是使用同一个锁对单个读/写操作做了同步。 代码示例: package ...
    99+
    2024-04-02
  • 并发编程之Java内存模型锁的内存语义
    目录1、锁的释放-获取建立的happens-before关系2、锁释放和获取的内存语义3、锁内存的语义实现4、concurrent包的实现简介: 锁的作用是让临界区互斥执行。本文阐述...
    99+
    2024-04-02
  • Java IO模型与Java网络编程模型的对比
    本篇内容主要讲解“Java IO模型与Java网络编程模型的对比”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Java IO模型与Java网络编程模型的对比”吧!IO模型介绍作者:cooffee...
    99+
    2023-06-02
  • python基础之并发编程(一)
    目录一、进程(Process)二、线程(Thread)三、并发编程解决方案:四、多线程实现 (两种)1、第一种 函数方法2、第二种 类方法包装五、守护线程与子线程1、线程在分法有:2...
    99+
    2024-04-02
  • python基础之并发编程(二)
    目录一、多进程的实现方法一方法二:二、使用进程的优缺点1、优点2、缺点三、进程的通信1、Queue 实现进程间通信2、Pipe 实现进程间通信(一边发送send(obj),一边接收(...
    99+
    2024-04-02
  • python基础之并发编程(三)
    目录一、协程定义和作用1、使用协程的优点2、使用协程的缺点二、Greenlet 的使用三、Gevent的使用四、async io 异步 IO1、asyncio中的task的使用五、总...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作