返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C语言近万字为你讲透栈和队列
  • 497
分享到

C语言近万字为你讲透栈和队列

2024-04-02 19:04:59 497人浏览 泡泡鱼
摘要

目录一、栈与队列以及双端队列的概念1.1 栈的概念及结构1.2 队列的概念及结构1.3 双端队列的概念及结构二、栈的实现和模拟栈2.1 实现一个支持动态增长的栈2.2 数组模拟静态栈

一、栈与队列以及双端队列的概念

1.1 栈的概念及结构

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端 称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。

出栈:栈的删除操作叫做出栈。出数据也在栈顶

1.2 队列的概念及结构

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出 FIFO(First In First Out)

入队列:进行插入操作的一端称为队尾

出队列:进行删除操作的一端称为队头

1.3 双端队列的概念及结构

双端队列:是一种线性表,又称为双向队列,所有的插入和删除(通常还有所有的访问)都在表的两端进行。

二、栈的实现和模拟栈

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的 代价比较小。、

2.1 实现一个支持动态增长的栈

头文件:

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>
typedef int STDataType;
typedef struct Stack//动态栈
{
	int *a;
	int top;//栈顶的位置
	int capacity;//容量
}ST;
STDataType StackTop(ST* ps);//返回栈顶的值
void StackInit(ST* ps);//初始化栈
void StackDestory(ST* ps);//销毁栈
void StackPop(ST* ps);//弹出
void StackPush(ST* ps, STDataType x);//插入
bool StackEmpty(ST* ps);//判断栈是否为空。

源文件:

#include"Stack.h"
void StackInit(ST* ps)//栈的初始化
{
	assert(ps);
	ps->a = NULL;//a点的值指向空
	ps->top = 0;//栈底为0
	ps->capacity = 0;//空间为0
}
void StackDestory(ST* ps)
{
	assert(ps);
	free(ps->a);//把a释放掉
	ps->a = NULL;
	ps->capacity = ps->top = 0;
}
void StackPush(ST* ps, STDataType x)//入数据
{
	assert(ps);
	//满了就扩容
	if (ps->top == ps->capacity)//如果栈的栈顶恰好和容量相等就扩容
	{
		int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
		ps->a = (STDataType*)realloc(ps->a, newCapacity * sizeof(STDataType));
		if (ps->a == NULL)
		{
			printf("realloc fail\n");
			exit(-1);
		}
		ps->capacity = newCapacity;//新的空间赋给旧的
	}
	ps->a[ps->top] = x;//栈顶插入x;
	ps->top++;//top++
}
void StackPop(ST* ps)
{
	assert(ps);
	assert(ps->top > 0);
	--ps->top;//top--就相当于删除操作
}
bool StackEmpty(ST* ps)
{
	assert(ps);
	//两种写法
	//if (ps->top > 0)
	//{
	//	return false;
	//}
	//else
	//{
	//	return true;
	//}
	return ps->top == 0;
}
STDataType StackTop(ST* ps)
{
	assert(ps);
	assert(ps->top > 0);
	return ps->a[ps->top - 1];//访问栈顶元素(这里因为top我们设为0,所以访问栈顶元素相当于top-1
}
int StackSize(ST* ps)
{
	assert(ps);
	return ps->top;
}

2.2 数组模拟静态栈

#include<iOStream>
using namespace std;
const int N = 1e6 + 10;
int n;
int stk[N];
int top = - 1;
int main ()
{
    cin >> n;
    while(n --)
    {
        string s;
        cin >> s;
        if(s == "push")
        {
            int a;
            cin >> a;
            stk[++top] = a;
        }
        if(s == "pop")
        {
            top--;
        }
        if(s == "empty")
        {
            if(top >= 0) printf("NO\n");
            else printf("YES\n");
        }
        if(s == "query")
        {
            printf("%d\n", stk[top]);
        }
    }
    return 0;
}

三、 队列的实现(动态)和模拟静态队列

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数 组头上出数据,效率会比较低。

3.1 实现一个支持动态增长的栈

头文件:

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>
typedef int QDataType;//方便改类型
typedef struct Queuenode//保存每个节点的数据
{
	QDataType data;
	struct QueueNode* next;
}QNode;
typedef struct Queue
{
	QNode* head;
	QNode* tail;
}Queue;
//上面的写法等价于:
//typedef struct Queue
//{
//	QNode* head;
//	QNode* tail;
//};
//
//typedef struct Queue Queue;//
//一般实际情况哨兵位的头节点不存储值,不放数据
void QueueInit(Queue* pq);//队列初始化
void QueueDestory(Queue* pq);//队列销毁
void QueuePush(Queue* pq, QDataType x);//队尾插入
void QueuePop(Queue* pq);//弹出队头
bool QueueEmpty(Queue* pq);//判断是否为空
size_t QueueSize(Queue* pq);//size_t相当于Unsinged int
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);

源文件:

#include"Queue.h"
void QueueInit(Queue* pq)
{
	assert(pq);
	pq->head = pq->tail = NULL;
}
void QueueDestory(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->head;
	while (cur)
	{
		QNode* next = cur->next;//先记录下一个位置
		free(cur);//free掉cur指针
		cur = next;//cur赋值到下一个位置
	}
	pq->head = pq->tail = NULL;//置空
}
void QueuePush(Queue* pq, QDataType x)//队尾插入//插入int类型的参数
{
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	assert(newnode);
	newnode->data = x;//新的节点的值被赋与x
	newnode->next = NULL;//新的节点是在队尾,所以指向的下一个位置是空
	if (pq->tail == NULL)//如果链表的第一个值为空,则head = tail = NULL
	{
		assert(pq->head == NULL);
		pq->head = pq->tail = newnode;
	}
	else//尾插
	{
		pq->tail->next = newnode;//先改指向
		pq->tail = newnode;//再改地址
	}
}
void QueuePop(Queue* pq)//弹出队首
{
	assert(pq);
	assert(pq->head && pq->tail);
	if (pq->head->next == NULL)//只有一个节点
	{
		free(pq->head);
		pq->head = pq->tail = NULL;
	}
	else
	{
		QNode* next = pq->head->next;//QNode* next相当于是QDataType的头指针的下一个位置
		free(pq->head);
		pq->head = next;//头往后走
	}
}
bool QueueEmpty(Queue* pq)
{
	assert(pq);
	//return pq->head == NULL && pq->tail == NULL;
	return pq->head == NULL;//程序调试了快一个小时就是因为pq->head没加后面的== NULL
}
size_t QueueSize(Queue* pq)//size_t相当于Unsinged int
{
	assert(pq);
	QNode* cur = pq->head;
	size_t size = 0;
	while (cur)
	{
		size++;
		cur = cur->next;
	}
	return size;
}
QDataType QueueFront(Queue* pq)//返回队头第一个位的值
{
	assert(pq);
	assert(pq->head);
	return pq->head->data;
}
QDataType QueueBack(Queue* pq)//返回队尾的值
{
	assert(pq);
	assert(pq->tail);
	return pq->tail->data;
}

3.2 数组模拟静态队列

#include<iostream>
#include<cstring>
#include<alGorithm>
using namespace std;
const int N = 1e5 + 10;
int q[N];
int n;
int hh ,tt = -1;//hh表示头,tt表示尾
int main ()
{
    cin >> n;
    while(n --)
    {
        string s;
        cin >> s;
        if(s == "push")
        {
            int x;
            cin >> x;
            q[++tt] = x;
        }
        else if(s == "pop")
        {
            hh ++;
        }
        else if(s == "empty")
            {
                if(hh <= tt) printf("NO\n");//尾在逻辑上要比头更前面
                else printf("YES\n");
            }
        else cout << q[hh] << endl;
    }
    return 0;
}

四、leetcode-栈实现队列和用队列实现栈

225. 用队列实现栈 - 力扣(LeetCode)

代码:

typedef int QDataType;
typedef struct QueueNode//保存每个节点的数据
{
	QDataType data;
	struct QueueNode* next;
}QNode;
typedef struct Queue
{
	QNode* head;
	QNode* tail;
}Queue;
void QueueInit(Queue* pq);
void QueueDestory(Queue* pq);
void QueuePush(Queue* pq, QDataType x);//队尾插入
void QueuePop(Queue* pq);
bool QueueEmpty(Queue* pq);
size_t QueueSize(Queue* pq);//size_t相当于Unsinged int
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);
void QueueInit(Queue* pq)
{
	assert(pq);
	pq->head = pq->tail = NULL;
}
void QueueDestory(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->head;
	while (cur)
	{
		QNode* next = cur->next;//先记录下一个位置
		free(cur);//free掉cur指针
		cur = next;//cur赋值到下一个位置
	}
	pq->head = pq->tail = NULL;//置空
}
void QueuePush(Queue* pq, QDataType x)//队尾插入
{
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	assert(newnode);
	newnode->data = x;
	newnode->next = NULL;
	if (pq->tail == NULL)//如果链表的第一个值为空,则head = tail = NULL
	{
		assert(pq->head == NULL);
		pq->head = pq->tail = newnode;
	}
	else//尾插
	{
		pq->tail->next = newnode;
		pq->tail = newnode;
	}
}
void QueuePop(Queue* pq)//弹出队首
{
	assert(pq);
	assert(pq->head && pq->tail);
	if (pq->head->next == NULL)//只有一个节点
	{
		free(pq->head);
		pq->head = pq->tail = NULL;
	}
	else
	{
		QNode* next = pq->head->next;//QNode* next相当于是QDataType的头指针的下一个位置
		free(pq->head);
		pq->head = next;//头往后走
	}
}
bool QueueEmpty(Queue* pq)
{
	assert(pq);
	//return pq->head == NULL && pq->tail == NULL;
	return pq->head == NULL;//程序调试了快一个小时就是因为pq->head没加后面的== NULL
}
size_t QueueSize(Queue* pq)//size_t相当于Unsinged int
{
	assert(pq);
	QNode* cur = pq->head;
	size_t size = 0;
	while (cur)
	{
		size++;
		cur = cur->next;
	}
	return size;
}
QDataType QueueFront(Queue* pq)//返回队头第一个位的值
{
	assert(pq);
	assert(pq->head);
	return pq->head->data;
}
QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(pq->tail);
	return pq->tail->data;
}
typedef struct {
    Queue q1;
    Queue q2;
} MyStack;
MyStack* myStackCreate() {
    MyStack* pst = (MyStack*)malloc(sizeof(MyStack));
    assert(pst);
 
    QueueInit(&pst->q1);
    QueueInit(&pst->q2);
    return pst;
}
void myStackPush(MyStack* obj, int x) {
    assert(obj);
    if(!QueueEmpty(&obj->q1))
    {
        QueuePush(&obj->q1, x);
    }
    else
    {
        QueuePush(&obj->q2, x);
    }
 
}
int myStackPop(MyStack* obj) {
    Queue* emptyQ = &obj->q1;//假设q1为空,q2不为空
    Queue* nonEmptyQ = &obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        emptyQ = &obj->q2;
        nonEmptyQ = &obj->q1;
    }
    //把非空队列的前N个数据导入空队列,剩下一个删掉
    //就实现了后进先出
    while(QueueSize(nonEmptyQ) > 1)
    {
        QueuePush(emptyQ, QueueFront(nonEmptyQ));
        QueuePop(nonEmptyQ);
    }
    int top = QueueFront(nonEmptyQ);//此时那个非空的队列只剩下一个数据
    QueuePop(nonEmptyQ);
    return top;
}
int myStackTop(MyStack* obj) {
    assert(obj);
      if(!QueueEmpty(&obj->q1))//如果q1不为空
    {
     return QueueBack(&obj->q1);  
    }
    else
    {
     return QueueBack(&obj->q2);  
    }
}
bool myStackEmpty(MyStack* obj) {
    return QueueEmpty(&obj->q1) && QueueEmpty(&obj->q2);
}
void myStackFree(MyStack* obj) {
    assert(obj); 
    QueueDestory(&obj->q1);
    QueueDestory(&obj->q2);
    free(obj);
}

232. 用栈实现队列 - 力扣(LeetCode)栈是后进先出

思路:设计两个栈,一个栈专门用来入数据,一个栈专门用来出数据。

typedef int STDataType;
typedef struct Stack//动态链表
{
	int *a;
	int top;//栈顶的位置
	int capacity;//容量
}ST;
STDataType StackTop(ST* ps);
void StackInit(ST* ps);//初始化栈
void StackDestory(ST* ps);
void StackPop(ST* ps);
void StackPush(ST* ps, STDataType x);
bool StackEmpty(ST* ps);
void StackInit(ST* ps)
{
	assert(ps);
	ps->a = NULL;
	ps->top = 0;
	ps->capacity = 0;
}
void StackDestory(ST* ps)
{
	assert(ps);
	free(ps->a);
	ps->a = NULL;
	ps->capacity = ps->top = 0;
}
void StackPush(ST* ps, STDataType x)//入数据
{
	assert(ps);
	//满了就扩容
	if (ps->top == ps->capacity)
	{
		int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
		ps->a = (STDataType*)realloc(ps->a, newCapacity * sizeof(STDataType));
		if (ps->a == NULL)
		{
			printf("realloc fail\n");
			exit(-1);
		}
		ps->capacity = newCapacity;
	}
	ps->a[ps->top] = x;
	ps->top++;
}
void StackPop(ST* ps)
{
	assert(ps);
	assert(ps->top > 0);
	--ps->top;
}
bool StackEmpty(ST* ps)
{
	assert(ps);
	//两种写法
	//if (ps->top > 0)
	//{
	//	return false;
	//}
	//else
	//{
	//	return true;
	//}
	return ps->top == 0;
}
STDataType StackTop(ST* ps)
{
	assert(ps);
	assert(ps->top > 0);
	return ps->a[ps->top - 1];//访问栈顶元素
}
int StackSize(ST* ps)
{
	assert(ps);
	return ps->top;
}
typedef struct
{
    ST pushST;
    ST popST;
} MyQueue;
MyQueue* myQueueCreate() {
    MyQueue* obj = (MyQueue*)malloc(sizeof(MyQueue));
    assert(obj);
    StackInit(&obj->pushST);//&符要加,要改变结构体里面的内容
    StackInit(&obj->popST);
    return obj;
}
void myQueuePush(MyQueue* obj, int x) {
    assert(obj);
    StackPush(&obj->pushST, x);
}
int myQueuePop(MyQueue* obj) {
    assert(obj);
    //如果popST为空, 把pushST的数据拿过来,就符合先进先出的顺序了
    if(StackEmpty(&obj->popST))//如果ST Pop为空就执行
    {
        while(!StackEmpty(&obj->pushST))
        {
            StackPush(&obj->popST, StackTop(&obj->pushST));
            StackPop(&obj->pushST);//把pushST里的数据删掉
        }
    }
    int front = StackTop(&obj->popST);//记录栈顶的数据
    StackPop(&obj->popST);
    return front;
}
int myQueuePeek(MyQueue* obj) {
    assert(obj);
    //如果popST为空, 把pushST的数据拿过来,就符合先进先出的顺序了
    if(StackEmpty(&obj->popST))//如果ST Pop为空就执行
    {
        while(!StackEmpty(&obj->pushST))
        {
            StackPush(&obj->popST, StackTop(&obj->pushST));
            StackPop(&obj->pushST);//把pushST里的数据删掉
        }
    }
    return StackTop(&obj->popST);
}
bool myQueueEmpty(MyQueue* obj) {
        assert(obj);
    return StackEmpty(&obj->pushST)&&StackEmpty(&obj->popST);
}
void myQueueFree(MyQueue* obj) {
    assert(obj);
    StackDestory(&obj->pushST);
    StackDestory(&obj->popST);
    free(obj);
}

总结

本文分别从(1)栈、队列以及双端队列的概念、(2)栈的实现(动态)和模拟静态栈、(3)队列的实现(动态)和模拟静态队列、(4)leetcode-栈实现队列和用队列实现栈四个方面对栈和队列这两个数据结构进行了分析,希望大家读后能够有所收获,也希望大家多多支持。

到此这篇关于C语言近万字为你讲透栈和队列的文章就介绍到这了,更多相关C语言栈和队列内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: C语言近万字为你讲透栈和队列

本文链接: https://lsjlt.com/news/149791.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • C语言近万字为你讲透栈和队列
    目录一、栈与队列以及双端队列的概念1.1 栈的概念及结构1.2 队列的概念及结构1.3 双端队列的概念及结构二、栈的实现和模拟栈2.1 实现一个支持动态增长的栈2.2 数组模拟静态栈...
    99+
    2024-04-02
  • C语言近万字为你讲透树与二叉树
    目录一、树概念及结构1.1 树的概念1.2 树的相关概念1.3 树的表示二、二叉树概念及结构2.1 概念2.2 特殊的二叉树:2.3 二叉树的性质2.4 二叉树的存储结构1. 顺序存...
    99+
    2024-04-02
  • C语言示例代码讲解栈与队列
    目录栈栈的定义顺序栈顺序栈的定义顺序栈的初始化顺序栈的入栈顺序栈的出栈取顺序栈的栈顶元素链栈队列队列的定义队列的顺序表达与实现队列顺序存储结构假溢出循环队列循环队列的初始化循环队列的...
    99+
    2024-04-02
  • C语言怎么实现栈和队列
    本文小编为大家详细介绍“C语言怎么实现栈和队列”,内容详细,步骤清晰,细节处理妥当,希望这篇“C语言怎么实现栈和队列”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。什么是栈栈:一种特殊的线性表,其只允许在固定的一端...
    99+
    2023-06-30
  • C语言栈和队列如何实现
    这篇文章主要讲解了“C语言栈和队列如何实现”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C语言栈和队列如何实现”吧!一、栈与队列以及双端队列的概念1.1 栈的概念及结构栈:一种特殊的线性表,...
    99+
    2023-06-30
  • C语言基于考研的栈和队列
    目录栈栈的基本操作三角矩阵总结栈 栈的基本操作 InitStack(&S):初始化 StackEmpty(S):判空,空则true,非空则fal...
    99+
    2024-04-02
  • C语言超详细讲解栈与队列实现实例
    目录1.思考-12.栈基本操作的实现2.1 初始化栈2.2 入栈2.3 出栈2.4 获取栈顶数据2.5 获取栈中有效元素个数2.6 判断栈是否为空2.7 销毁栈3.测试3.1 测试3...
    99+
    2024-04-02
  • C语言编程数据结构的栈和队列
    目录栈数组实现标题全部代码Stack_array.cStack_array.h初始化数组栈满栈后扩容是否为空栈压栈和退栈链表实现stack_chain.hstack_chain.c整...
    99+
    2024-04-02
  • C语言分别实现栈和队列详解流程
    目录什么是栈栈的结构图示栈的实现创建栈的结构体初始化栈入栈出栈获取栈顶元素获取栈中有效元素个数检测栈是否为空栈的销毁什么是队列?队列的实现创建队列结构体初始化队列队尾入队列队头出队列...
    99+
    2024-04-02
  • c语言数据结构之栈和队列详解(Stack&Queue)
    目录简介栈一、栈的基本概念1、栈的定义2、栈的常见基本操作二、栈的顺序存储结构1、栈的顺序存储2、顺序栈的基本算法3、共享栈(两栈共享空间)三、栈的链式存储结构1、链栈2、链栈的基本...
    99+
    2024-04-02
  • C语言数据结构进阶之栈和队列的实现
    目录栈的实现:一、栈的概念和性质二、栈的实现思路三、栈的相关变量内存布局图四、栈的初始化和销毁五、栈的接口实现:1.入栈2.出栈3.获取栈顶的数据4.获取栈的元素个数5.判断栈是否为...
    99+
    2024-04-02
  • C语言编程数据结构栈与队列的全面讲解示例教程
    目录一、栈的表示和实现1栈的概念和结构2栈的初始化3压栈(栈顶插入一个数据)4出栈(栈顶删除一个数据)5取栈顶元素6取栈顶元素7判断栈是否为空二、队列的表示和实现1队列的概念及结构2...
    99+
    2024-04-02
  • C语言怎么利用栈和队列实现回文检测功能
    本文小编为大家详细介绍“C语言怎么利用栈和队列实现回文检测功能”,内容详细,步骤清晰,细节处理妥当,希望这篇“C语言怎么利用栈和队列实现回文检测功能”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。具体代码如下:#i...
    99+
    2023-06-16
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作