返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C++中list的使用与模拟实现
  • 169
分享到

C++中list的使用与模拟实现

2024-04-02 19:04:59 169人浏览 独家记忆
摘要

目录一、list的介绍以及使用1.1 list的介绍1.2 list的使用1.2.1 list的构造1.2.2 list iterator的使用1.2.3 list capacity

一、list的介绍以及使用

1.1 list的介绍

1、list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代(所谓的常熟范围内,就是时间复杂度为O(1))

2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。

3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。

4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。

5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素) 

这一段关于list的特性,需要能够与vector对比理解。

1.2 list的使用

1.2.1 list的构造

构造函数( (constructor))接口说明
list()构造空的list
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list
#include <iOStream>
#include <list>
using namespace std;
int main()
{
    std::list<int> l1; // 构造空的l1
    std::list<int> l2(4, 100); // l2中放4个值为100的元素
    std::list<int> l3(l2.begin(), l2.end()); // 用l2的[begin(), end())左闭右开的区间构造l3
    std::list<int> l4(l3); // 用l3拷贝构造l4
    // 以数组为迭代器区间构造l5
    int array[] = { 16,2,77,29 };
    std::list<int> l5(array, array + sizeof(array) / sizeof(int));
    // 用迭代器方式打印l5中的元素
    for (std::list<int>::iterator it = l5.begin(); it != l5.end(); it++)
        std::cout << *it << " ";
    std::cout << endl;
    // c++11范围for的方式遍历
    for (auto& e : l5)
    {
        std::cout << e << " ";
    }
    std::cout << endl;
    return 0;
}

1.2.2 list iterator的使用

函数声明接口说明
begin +
end
返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin +
rend
返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的reverse_iterator,即begin位置

注意:

1、begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动

2、rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

#include <iostream>
#include <list>
using namespace std;
void print_list(const list<int>& l)
{
    // 注意这里调用的是list的 begin() const,返回list的const_iterator对象
    for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it)
    {
        cout << *it << " ";
        // *it = 10; 编译不通过
    }
    cout << endl;
}
int main()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    list<int> l(array, array + sizeof(array) / sizeof(array[0]));
    // 使用正向迭代器正向list中的元素
    for (list<int>::iterator it = l.begin(); it != l.end(); ++it)
    {
        cout << *it << " ";
    }
    cout << endl;
    // 使用反向迭代器逆向打印list中的元素
    for (list<int>::reverse_iterator it = l.rbegin(); it != l.rend(); ++it)
    {
        cout << *it << " ";
    }
    cout << endl;
    return 0;
}

1.2.3 list capacity

函数声明接口说明
empty检测list是否为空,是返回true,否则返回false
size返回list中有效节点的个数

1.2.4 list element access

函数声明接口说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用

1.2.5 list modifiers

函数声明接口说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素

这里就不用代码的形式展示了

1.2.6 list的迭代器失效

前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

#include <iostream>
#include <list>
using namespace std;
void TestListIterator1()
{
	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	list<int> l(array, array + sizeof(array) / sizeof(array[0]));
	auto it = l.begin();
	while (it != l.end())
	{
		// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值
		l.erase(it);
		++it;
	}
}
// 改正
void TestListIterator()
{
	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	list<int> l(array, array + sizeof(array) / sizeof(array[0]));
	auto it = l.begin();
	while (it != l.end())
	{
		l.erase(it++); // it = l.erase(it);
	}
}

二、list的模拟实现

2.1 模拟实现list

这是本章的重中之重。

#include <iostream>
#include <assert.h>
using std::cout;
using std::endl;
namespace zjx
{
	// List的节点类
	template<class T>
	struct Listnode
	{
		ListNode(const T& val = T())
			:_pPre(nullptr),
			_pNext(nullptr),
			_val(val)
		{
		}
		ListNode<T>* _pPre;
		ListNode<T>* _pNext;
		T _val;
	};
 
	//List的迭代器类
	template<class T, class Ref, class Ptr>
	struct ListIterator
	{
		typedef ListNode<T>* PNode;
		typedef ListIterator<T, Ref, Ptr> Self;
	public:
		ListIterator(PNode pNode = nullptr)
		{
			_pNode = pNode;
		}
		//ListIterator(const Self& l);
 
		Ref operator*()
		{
			return _pNode->_val;
		}
 
		Ptr operator->()
		{
			return &_pNode->_val;
		}
 
		Self& operator++()
		{
			_pNode = _pNode->_pNext;
			return *this;
		}
 
		Self operator++(int)
		{
			Self tmp(*this);
			_pNode = _pNode->_pNext;
			return tmp;
		}
 
		Self& operator--()
		{
			_pNode = _pNode->_pPre;
			return *this;
		}
 
		Self& operator--(int)
		{
			Self tmp(*this);
			_pNode = _pNode->_pPre;
			return tmp;
		}
 
		bool operator!=(const Self& l)
		{
			return _pNode != l._pNode;
		}
 
		bool operator==(const Self& l)
		{
			return _pNode == l._pNode;
		}
 
	public:
		PNode _pNode;
	};
 
	//list类
	template<class T>
	class list
	{
		typedef ListNode<T> Node;
 
		typedef Node* PNode;
 
	public:
 
		typedef ListIterator<T, T&, T*> iterator;
 
		typedef ListIterator<T, const T&, const T*> const_iterator;
 
	public:
 
		// List的构造
 
		list()
		{
			_pHead = new Node();
			_pHead->_pNext = _pHead;
			_pHead->_pPre = _pHead;
		}
		//构造函数
		list(int n, const T& value = T())
		{
			_pHead = new Node();
			_pHead->_pNext = _pHead;
			_pHead->_pPre = _pHead;
			for (int i = 0; i < n; i++)
			{
				push_back(value);
			}
		}
 
		template <class Iterator>
		list(Iterator first, Iterator last)
		{
			_pHead = new Node();
			_pHead->_pNext = _pHead;
			_pHead->_pPre = _pHead;
			while (first != last)
			{
				push_back(*first);
				first++;
			}
		}
 
		//拷贝构造函数
		list(const list<T>& l)
		{
			//用迭代器先构造出来一个
			list tmp(l.begin(), l.end());
			_pHead = new Node();
			_pHead->_pNext = _pHead;
			_pHead->_pPre = _pHead;
			std::swap(_pHead, tmp._pHead);
		}
 
		list<T>& operator=(list<T> l)
		{
			std::swap(_pHead, l._pHead);
			return *this;
		}
 
		~list()
		{
			clear();
			delete _pHead;
			_pHead = nullptr;
		}
		//List Iterator
		iterator begin()
		{
			return iterator(_pHead->_pNext);
		}
 
		iterator end()
		{
			return iterator(_pHead);
		}
 
		const_iterator begin() const
		{
			return const_iterator(_pHead->_pNext);
		}
 
		const_iterator end() const
		{
			return const_iterator(_pHead);
		}
 
		// List Capacity
		size_t size()const//这个函数右边的const是用来限定this指针的。原本的this指针,不可以改变指向,可以改变所知的内容。
						  //但若要对所指向的内容加以限定的话,那就在函数的右边加上const,表示此函数的隐藏的参数,也就是this指针,被加以const限定。
		{
			size_t count = 0;
			const_iterator cur = begin();
			while (cur != end())
			{
				count++;
				cur++;
			}
			return count;
		}
		//list为空返回1,否则返回0
		bool empty()const
		{
			return size() == 0;
		}
 
		// List Access
 
		T& front()
		{
			return begin()._pNode->_val;
		}
 
		const T& front()const
		{
			return begin()._pNode->_val;
		}
 
		T& back()
		{
			return _pHead->_pPre->_val;
		}
 
		const T& back()const
		{
			return _pHead->_pPre->_val;
		}
 
		// List Modify
 
		//void push_back(const T& val) 
		//{ 
		//    insert(begin(), val); 
		//}
		void push_back(const T& val)
		{
			Node* tail = _pHead->_pPre;
			Node* newnode = new Node(val);
			tail->_pNext = newnode;
			newnode->_pPre = tail;
			newnode->_pNext = _pHead;
			_pHead->_pPre = newnode;
		}
 
		void pop_back()
		{
			erase(--end());
		}
 
		void push_front(const T& val)
		{
			insert(begin(), val);
		}
 
		void pop_front()
		{
			erase(begin());
		}
 
		 在pos位置前插入值为val的节点
 
		iterator insert(iterator pos, const T& val)
		{
			PNode next = pos._pNode;
			PNode prev = next->_pPre;
			PNode newnode = new Node(val);
			newnode->_pNext = next;
			newnode->_pPre = prev;
			prev->_pNext = newnode;
			next->_pPre = newnode;
			return iterator(newnode);
		}
 
		 删除pos位置的节点,返回该节点的下一个位置
 
		iterator erase(iterator pos)
		{
			assert(pos != end());
			PNode next = pos._pNode->_pNext;
			PNode prev = pos._pNode->_pPre;
			delete pos._pNode;
			prev->_pNext = next;
			next->_pPre = prev;
			return iterator(next);
		}
 
		void clear()
		{
			iterator cur = begin();
			while (cur != end())
			{
				erase(cur++);
			}
			_pHead->_pNext = _pHead;
			_pHead->_pPre = _pHead;
		}
 
		//void swap(list<T>& l);
 
	private:
 
		void CreateHead()
		{
			_pHead = new Node();
			_pHead->_pNext = _pHead;
			_pHead->_pPre = _pHead;
		}
		PNode _pHead;
	};
 
};
class Date
{
private:
	int _year;
	int _month;
	int _day;
public:
	Date(int year = 0, int month = 0, int day = 0)
		:_year(year),
		_month(month),
		_day(day)
	{
	}
	void print()
	{
		std::cout << _year << " " << _month << " " << _day << std::endl;
	}
};
int main()
{
	using namespace zjx;
	list<Date> it;
	it.push_back(Date(2022, 5, 16));
	it.push_back(Date(2022, 5, 17));
	it.push_back(Date(2022, 5, 18));
	it.push_back(Date(2022, 5, 19));
	it.push_back(Date(2022, 5, 20));
	for (auto e : it)
	{
		e.print();
	}
	cout << endl;
	list<int> a1(5, 2);
	for (auto e : a1)
	{
		cout << e << " ";
	}
	cout << endl;
	list<Date> a2(it);
	for (auto e : a2)
	{
		e.print();
	}
	cout << endl;
	int arr[] = { 1,2,3,4,5,6,7,8,9 };
	list<int> a3(arr, arr + 9);
	for (auto e : a3)
	{
		cout << e << " ";
	}
	cout << endl;
	a1 = a3;
	for (auto e : a1)
	{
		cout << e << " ";
	}
	cout << endl;
 
	cout << "a3的元素的个数 = " << a3.size() << endl;
 
	list<int> a4;
	cout << a4.empty() << endl;
	const auto ans1 = a3.front();
	auto ans2 = a3.back();
	cout << "ans1 = " << ans1 << " " << "ans2 = " << ans2 << endl;
	a3.push_front(30);
	a3.pop_back();
	a3.pop_front();
	a3.pop_front();
	for (auto e : a3)
	{
		cout << e << " ";
	}
	cout << endl;
	return 0;
}

函数右边的const是用来限定this指针的。原本的this指针,不可以改变指向,可以改变所知的内容。

但若要对所指向的内容加以限定的话,那就在函数的右边加上const,表示此函数的隐藏的参数,也就是this指针,被加以const限定。

vector缺陷:

连续的物理空间,是优势,也是劣势。优势:支持高效随机访问。

劣势:

1、空间不够要增容,增容代价比较大。

2、可能存在一定空间浪费。按需申请,会导致频繁增容,所以一般都会2倍左右扩容。

3、头部或者中部插入删除需要挪动数据,效率低下list很好的解决vector的以上问题:

1、按需申请释放空间。

2、list任意位置支持O(1)插入删除。

const对象会自动找到const修饰的函数

总结

到此这篇关于C++中list的使用与模拟实现的文章就介绍到这了,更多相关C++ list讲解内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: C++中list的使用与模拟实现

本文链接: https://lsjlt.com/news/149230.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • C++中list的使用与模拟实现
    目录一、list的介绍以及使用1.1 list的介绍1.2 list的使用1.2.1 list的构造1.2.2 list iterator的使用1.2.3 list capacity...
    99+
    2024-04-02
  • C++list的模拟实现
    目录一、节点的结构,list的迭代器的结构,以及list的结构1、节点的结构2、迭代器的结构3、list的结构二、迭代器的实现1、*运算符重载2、++ 与 --运算符3、->运...
    99+
    2023-05-16
    C++ list C++ list模拟实现
  • C++中priority_queue的使用与模拟实现
    目录priority_queue的使用priority_queue简介priority_queue的使用priority_queue的模拟实现priority_queue的使用 pr...
    99+
    2024-04-02
  • C++模拟实现list功能
    目录list介绍构造函数无参构造函数有参构造函数模板区间构造函数拷贝构造函数赋值运算符重载析构函数迭代器迭代器构造函数迭代器关系运算符重载迭代器++ --运算符重载迭代器 * 运算符...
    99+
    2024-04-02
  • 详解C++ STL模拟实现list
    目录list 概述接口总览list 的节点默认成员函数默认构造函数析构函数拷贝构造函数复制赋值函数list 的迭代器构造函数operator==operator!=operator*...
    99+
    2023-01-11
    C++ STL实现list C++ STL list
  • 利用C++模拟实现STL容器:list
    目录一、list的介绍二、list的排序三、迭代器1、list的迭代器失效问题2、迭代器的功能分类3、list迭代器的模拟实现4、迭代器价值5、迭代器operator->的重载...
    99+
    2022-12-08
    C++实现STL容器list C++ STL容器list C++ STL容器
  • C++深入探究list的模拟实现
    目录迭代器正向迭代器类反向迭代器类push_back尾插函数push_front头插函数insert插入函数erase删除函数pop_front函数pop_back函数构造函数析构函...
    99+
    2024-04-02
  • c++中vector的使用和模拟实现
    一、接口介绍 1、插入数据 void push_back(const T& x) 在当前vector尾部插入x,如果容量不够扩大二倍。 iterator insert(it...
    99+
    2024-04-02
  • C++模拟实现List迭代器详解
    目录概念迭代器使用迭代器模拟实现迭代器的大体结构构造函数解引用重载重载自增实现自减实现运算符重载迭代器失效模拟List概念 迭代器是一种抽象的设计概念,其定义为:提供一种方法,使他能...
    99+
    2024-04-02
  • C++之list容器模拟怎么实现
    这篇“C++之list容器模拟怎么实现”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“C++之list容器模拟怎么实现”文章吧...
    99+
    2023-07-05
  • C++之list容器模拟实现方式
    目录总述一、节点类二、迭代器类成员变量构造函数*重载->重载“++”“==“和”!=”三、反向迭代器类成...
    99+
    2023-02-05
    C++ list容器 list容器模拟实现 模拟实现list
  • C++初阶之list的模拟实现过程详解
    list的介绍 list的优点: list头部、中间插入不再需要挪动数据,O(1)效率高 list插入数据是新增节点,不需要增容 list的缺点: ...
    99+
    2024-04-02
  • C++中memcpy函数的使用以及模拟实现
    目录前言一、什么是memcpy二、memcpy与strcpy的区别1.strcpy2.memcpy三、模拟实现memcpy总结前言 memcpy函数如何使用,以及如何实现我们自己的m...
    99+
    2024-04-02
  • C++  STL _ Vector使用及模拟实现
    目录1.Vector的介绍1.1 Vector的介绍2.Vector的使用2.1 vector的定义2.2 vector 迭代器的使用 2.3 vector的空间增长问题3...
    99+
    2024-04-02
  • C++ stack与queue模拟实现详解
    目录stack与queue模拟实现 stackqueue为什么选择deque作为stack和queue的底层默认容器总结stack与queue模拟实现 在stl中,stack(...
    99+
    2024-04-02
  • C++中如何模拟实现vector
    这篇文章给大家分享的是有关C++中如何模拟实现vector的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。vector接口总览namespace nzb{//模拟实现vectortemplate<c...
    99+
    2023-06-25
  • C++详细讲解stack与queue的模拟实现
    目录容器适配器双端队列概念结构deque迭代器优缺点stack模拟queue模拟实现容器适配器 适配器是一种设计模式(设计模式是一套反复使用的、大部分人知道的代码设计经验的总结),该...
    99+
    2024-04-02
  • C++实现stack与queue数据结构的模拟
    目录stack模拟实现queue模拟实现栈和队列都是容器适配器搞出来的,对容器进行封装,从而实现先进先出和后进先出的结构 stack模拟实现 常规实现数据结构的思路 template...
    99+
    2023-05-16
    C++ stack与queue模拟 C++ stack模拟实现 C++ queue模拟实现
  • C++中vector的模拟实现实例详解
    目录vector接口总览 默认成员函数 构造函数 拷贝构造 赋值重载 析构函数 迭代器相关函数 begin和end 容量相关函数 size和capacity reserve resi...
    99+
    2024-04-02
  • C++ STL vector的模拟实现
    1. vector的介绍和使用 vector是表示可变大小数组的序列容器。 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对v...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作