Python 官方文档:入门教程 => 点击学习
目录线程安全线程安全主要体现在以下三个方面JUC中的Atomic包详解总结线程安全 当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中
当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中不需要任何额外的同步或协调,这个类都能表现出正确的行为,那么就称这个类时线程安全的。
Atomic包中提供了很多Atomicxxx的类:
它们都是CAS(compareAndSwap)来实现原子性。
先写一个简单示例如下:
@Slf4j
public class AtomicExample1 {
// 请求总数
public static int clientTotal = 5000;
// 同时并发执行的线程数
public static int threadTotal = 200;
public static AtomicInteger count = new AtomicInteger(0);
public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
final Semaphore semaphore = new Semaphore(threadTotal);
final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
for (int i = 0; i < clientTotal ; i++) {
executorService.execute(() -> {
try {
semaphore.acquire();
add();
semaphore.release();
} catch (Exception e) {
log.error("exception", e);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
log.info("count:{}", count.get());
}
private static void add() {
count.incrementAndGet();
}
}
可以发下每次的运行结果总是我们想要的预期结果5000。说明该计数方法是线程安全的。
我们查看下count.incrementAndGet()方法,它的第一个参数为对象本身,第二个参数为valueOffset是用来记录value本身在内存的编译地址的,这个记录,也主要是为了在更新操作在内存中找到value的位置,方便比较,第三个参数为常量1
public class AtomicInteger extends Number implements java.io.Serializable {
private static final long serialVersionUID = 6214790243416807050L;
// setup to use Unsafe.compareAndSwapint for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile int value;
... 此处省略多个方法...
public final int incrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}
}
AtomicInteger源码里使用了一个Unsafe的类,它提供了一个getAndAddInt的方法,我们继续点看查看它的源码:
public final class Unsafe {
private static final Unsafe theUnsafe;
....此处省略很多方法及成员变量....
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;
}
public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);
public native int getIntVolatile(Object var1, long var2);
}
可以看到这里使用了一个do while语句来做主体实现的。而在while语句里它的核心是调用了一个compareAndSwapInt()的方法。它是一个native方法,它是一个底层的方法,不是使用Java来实现的。
假设我们要执行0+1=0的操作,下面是单线程情况下各参数的值:
更新后:
compareAndSwapInt()方法的第一个参数(var1)是当前的对象,就是代码示例中的count。此时它的值为0(期望值)。第二个值(var2)是传递的valueOffset值,它的值为12。第三个参数(var4)就为常量1。方法中的变量参数(var5)是根据参数一和参数二valueOffset,调用底层getIntVolatile方法得到的值,此时它的值为0 。compareAndSwapInt()想要达到的目标是对于count这个对象,如果当前的期望值var1里的value跟底层的返回的值(var5)相同的话,那么把它更新成var5+var4这个值。不同的话重新循环取期望值(var5)直至当前值与期望值相同才做更新。compareAndSwap方法的核心也就是我们通常所说的CAS。
Atomic包下其他的类如AtomicLong等的实现原理基本与上述一样。
这里再介绍下LongAdder这个类,通过上述的分析,我们已经知道了AtomicLong使用CAS:在一个死循环内不断尝试修改目标值直到修改成功。如果在竞争不激烈的情况下,它修改成功概率很高。反之,如果在竞争激烈的情况下,修改失败的概率会很高,它就会进行多次的循环尝试,因此性能会受到一些影响。
对于普通类型的long和double变量,JVM允许将64位的读操作或写操作拆成两个32位的操作。LongAdder的核心思想是将热点数据分离,它可以将AtomicLong内部核心数据value分离成一个数组,每个线程访问时通过hash等算法映射到其中一个数字进行计数。而最终的计数结果则为这个数组的求和累加,其中热点数据value,它会被分离成多个单元的cell,每个cell独自维护内部的值,当前对象的实际值由所有的cell累计合成。这样,热点就进行了有效的分离,提高了并行度。LongAdder相当于在AtomicLong的基础上将单点的更新压力分散到各个节点上,在低并发的时候对base的直接更新可以很好的保障跟Atomic的性能基本一致。而在高并发的时候,通过分散提高了性能。但是如果在统计的时候有并发更新,可能会导致统计的数据有误差。
在实际高并发计数的时候,可以优先使用LongAdder。在低并行度或者需要准确数值的时候可以优先使用AtomicLong,这样反而效率更高。
下面简单的演示下Atomic包下AtomicReference简单的用法:
@Slf4j
public class AtomicExample4 {
private static AtomicReference<Integer> count = new AtomicReference<>(0);
public static void main(String[] args) {
count.compareAndSet(0, 2);
count.compareAndSet(0, 1);
log.info("count:{}", count.get());
}
}
compareAndSet()分别传入的是预期值跟更新值,只有当预期值跟当前值相等时,才会将值更新为更新值;
上面的第一个方法可以将值更新为2,而第二个步中无法将值更新为1。
下面简单介绍下AtomicIntegerFieldUpdater 用法(利用原子性去更新某个类的实例):
@Slf4j
public class AtomicExample5 {
private static AtomicIntegerFieldUpdater<AtomicExample5> updater =
AtomicIntegerFieldUpdater.newUpdater(AtomicExample5.class, "count");
@Getter
private volatile int count = 100;
public static void main(String[] args) {
AtomicExample5 example5 = new AtomicExample5();
if (updater.compareAndSet(example5, 100, 120)) {
log.info("update success 1, {}", example5.getCount());
}
if (updater.compareAndSet(example5, 100, 120)) {
log.info("update success 2, {}", example5.getCount());
} else {
log.info("update failed, {}", example5.getCount());
}
}
}
它可以更新某个类中指定成员变量的值。
注意:修改的成员变量需要用volatile关键字来修饰,并且不能是static描述的字段。
AtomicStampReference这个类它的核心是要解决CAS的ABA问题(CAS操作的时候,其他线程将变量的值A改成了B,接着又改回了A,等线程使用期望值A与当前变量进行比较的时候,发现A变量没有变,于是CAS就将A值进行了交换操作。
实际上该值已经被其他线程改变过)。
ABA问题的解决思路就是每次变量变更的时候,就将版本号加一。
看一下它的一个核心方法compareAndSet():
public class AtomicStampedReference<V> {
private static class Pair<T> {
final T reference;
final int stamp;
private Pair(T reference, int stamp) {
this.reference = reference;
this.stamp = stamp;
}
static <T> Pair<T> of(T reference, int stamp) {
return new Pair<T>(reference, stamp);
}
}
... 此处省略多个方法 ....
public boolean compareAndSet(V expectedReference,
V newReference,
int expectedStamp,
int newStamp) {
Pair<V> current = pair;
return
expectedReference == current.reference &&
expectedStamp == current.stamp &&
((newReference == current.reference &&
newStamp == current.stamp) ||
casPair(current, Pair.of(newReference, newStamp)));
}
}
可以看到它多了一个stamp的比较,stamp的值是由每次更新的时候进行维护的。
再介绍下AtomicLongArray,它维护了一个数组。在该数组下,我们可以选择性的已原子性操作更新某个索引对应的值。
public class AtomicLongArray implements java.io.Serializable {
private static final long serialVersionUID = -2308431214976778248L;
private static final Unsafe unsafe = Unsafe.getUnsafe();
...此处省略....
public final long getAndSet(int i, long newValue) {
return unsafe.getAndSetLong(array, checkedByteOffset(i), newValue);
}
public final boolean compareAndSet(int i, long expect, long update) {
return compareAndSetRaw(checkedByteOffset(i), expect, update);
}
}
最后再写一个AtomcBoolean的简单使用:
@Slf4j
public class AtomicExample6 {
private static AtomicBoolean isHappened = new AtomicBoolean(false);
// 请求总数
public static int clientTotal = 5000;
// 同时并发执行的线程数
public static int threadTotal = 200;
public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
final Semaphore semaphore = new Semaphore(threadTotal);
final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
for (int i = 0; i < clientTotal ; i++) {
executorService.execute(() -> {
try {
semaphore.acquire();
test();
semaphore.release();
} catch (Exception e) {
log.error("exception", e);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
log.info("isHappened:{}", isHappened.get());
}
private static void test() {
if (isHappened.compareAndSet(false, true)) {
log.info("execute");
}
}
}
以上就是Atomic包的基本原理及主要的使用方法。它是使用CAS来保证原子性操作,从而达到线程安全的目的。
仅为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。
--结束END--
本文标题: Java并发编程之原子性-Atomic的使用
本文链接: https://lsjlt.com/news/142603.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0