返回顶部
首页 > 资讯 > 后端开发 > Python >CountDownLatch和Atomic原子操作类源码解析
  • 885
分享到

CountDownLatch和Atomic原子操作类源码解析

2024-04-02 19:04:59 885人浏览 泡泡鱼

Python 官方文档:入门教程 => 点击学习

摘要

目录引导语1、CountDownLatch1.1、await1.2、countDown1.3、示例2、Atomic原子操作类3、总结引导语 本小节和大家一起来看看 CountDown

引导语

本小节和大家一起来看看 CountDownLatch 和 Atomic 打头的原子操作类,CountDownLatch 的源码非常少,看起来比较简单,但 CountDownLatch 的实际应用却不是很容易;Atomic 原子操作类就比较好理解和应用,接下来我们分别来看一下。

1、CountDownLatch

CountDownLatch 中文有的叫做计数器,也有翻译为计数,其最大的作用不是为了加锁,而是通过计数达到等待的功能,主要有两种形式的等待:

  • 让一组线程在全部启动完成之后,再一起执行(先启动的线程需要阻塞等待后启动的线程,直到一组线程全部都启动完成后,再一起执行);
  • 主线程等待另外一组线程都执行完成之后,再继续执行。

我们会举一个示例来演示这两种情况,但在这之前,我们先来看看 CountDownLatch 的底层源码实现,这样就会清晰一点,不然一开始就来看示例,估计很难理解。

CountDownLatch 有两个比较重要的 api,分别是 await 和 countDown,管理着线程能否获得锁和锁的释放(也可以称为对 state 的计数增加和减少)。

1.1、await

await 我们可以叫做等待,也可以叫做加锁,有两种不同入参的方法,源码如下:

public void await() throws InterruptedException {
    sync.acquireSharedInterruptibly(1);
}
// 带有超时时间的,最终都会转化成毫秒
public boolean await(long timeout, TimeUnit unit)
    throws InterruptedException {
    return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}

两个方法底层使用的都是 sync,sync 是一个同步器,是 CountDownLatch 的内部类实现的,如下:

private static final class Sync extends AbstractQueuedSynchronizer {}

可以看出来 Sync 继承了 AbstractQueuedSynchronizer,具备了同步器的通用功能。

无参 await 底层使用的是 acquireSharedInterruptibly 方法,有参的使用的是 tryAcquireSharedNanos 方法,这两个方法都是 AQS 的方法,底层实现很相似,主要分成两步:

1.使用子类的 tryAcquireShared 方法尝试获得锁,如果获取了锁直接返回,获取不到锁走 2;

2.获取不到锁,用 node 封装一下当前线程,追加到同步队列的尾部,等待在合适的时机去获得锁。

第二步是 AQS 已经实现了,第一步 tryAcquireShared 方法是交给 Sync 实现的,源码如下:

// 如果当前同步器的状态是 0 的话,表示可获得锁
protected int tryAcquireShared(int acquires) {
    return (getState() == 0) ? 1 : -1;
}

获得锁的代码也很简单,直接根据同步器的 state 字段来进行判断,但还是有两点需要注意一下:

获得锁时,state 的值不会发生变化,像 ReentrantLock 在获得锁时,会把 state + 1,但 CountDownLatch 不会;

CountDownLatch 的 state 并不是 AQS 的默认值 0,而是可以赋值的,是在 CountDownLatch 初始化的时候赋值的,

代码如下:

// 初始化,count 代表 state 的初始化值
public CountDownLatch(int count) {
    if (count < 0) throw new IllegalArgumentException("count < 0");
    // new Sync 底层代码是 state = count;
    this.sync = new Sync(count);
}

这里的初始化的 count 和一般的锁意义不太一样,count 表示我们希望等待的线程数,在两种不同的等待场景中,count 有不同的含义:

让一组线程在全部启动完成之后,再一起执行的等待场景下, count 代表一组线程的个数;

主线程等待另外一组线程都执行完成之后,再继续执行的等待场景下,count 代表一组线程的个数。

所以我们可以把 count 看做我们希望等待的一组线程的个数,可能我们是等待一组线程全部启动完成,可能我们是等待一组线程全部执行完成。

1.2、countDown

countDown 中文翻译为倒计时,每调用一次,都会使 state 减一,底层调用的方法如下:

public void countDown() {
    sync.releaseShared(1);
}

releaseShared 是 AQS 定义的方法,方法主要分成两步:

1.尝试释放锁(tryReleaseShared),锁释放失败直接返回,释放成功走2 

2.释放当前节点的后置等待节点。

第二步 AQS 已经实现了,第一步是 Sync 实现的,我们一起来看下 tryReleaseShared 方法的实现源码:

// 对 state 进行递减,直到 state 变成 0;
// state 递减为 0 时,返回 true,其余返回 false
protected boolean tryReleaseShared(int releases) {
    // 自旋保证 CAS 一定可以成功
    for (;;) {
        int c = getState();
        // state 已经是 0 了,直接返回 false
        if (c == 0)
            return false;
        // 对 state 进行递减
        int nextc = c-1;
        if (compareAndSetState(c, nextc))
            return nextc == 0;
    }
}

从源码中可以看到,只有到 count 递减到 0 时,countDown 才会返回 true。

1.3、示例

看完 CountDownLatch 两个重要 API 后,我们来实现文章开头说的两个功能:

让一组线程在全部启动完成之后,再一起执行;

主线程等待另外一组线程都执行完成之后,再继续执行。

代码在 CountDownLatchDemo 类中,大家可以调试看看,源码如下:

public class CountDownLatchDemo {
  // 线程任务
  class Worker implements Runnable {
    // 定义计数锁用来实现功能 1
    private final CountDownLatch startSignal;
    // 定义计数锁用来实现功能 2
    private final CountDownLatch doneSignal;
    Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
      this.startSignal = startSignal;
      this.doneSignal = doneSignal;
    }
		// 子线程做的事情
    public void run() {
      try {
        System.out.println(Thread.currentThread().getName()+" begin");
        // await 时有两点需要注意:await 时 state 不会发生变化,2:startSignal 的state初始化是 1,所以所有子线程都是获取不到锁的,都需要到同步队列中去等待,达到先启动的子线程等待后面启动的子线程的结果
        startSignal.await();
        doWork();
        // countDown 每次会使 state 减一,doneSignal 初始化为 9,countDown 前 8 次执行都会返回 false (releaseShared 方法),执行第 9 次时,state 递减为 0,会 countDown 成功,表示所有子线程都执行完了,会释放 await 在 doneSignal 上的主线程
        doneSignal.countDown();
        System.out.println(Thread.currentThread().getName()+" end");
      } catch (InterruptedException ex) {
      } // return;
    }
    void doWork() throws InterruptedException {
      System.out.println(Thread.currentThread().getName()+"sleep 5s …………");
      Thread.sleep(5000l);
    }
  }
  @Test
  public void test() throws InterruptedException {
    // state 初始化为 1 很关键,子线程是不断的 await,await 时 state 是不会变化的,并且发现 state 都是 1,所有线程都获取不到锁
    // 造成所有线程都到同步队列中去等待,当主线程执行 countDown 时,就会一起把等待的线程给释放掉
    CountDownLatch startSignal = new CountDownLatch(1);
    // state 初始化成 9,表示有 9 个子线程执行完成之后,会唤醒主线程
    CountDownLatch doneSignal = new CountDownLatch(9);
    for (int i = 0; i < 9; ++i) // create and start threads
    {
      new Thread(new Worker(startSignal, doneSignal)).start();
    }
    System.out.println("main thread begin");
    // 这行代码唤醒 9 个子线程,开始执行(因为 startSignal 锁的状态是 1,所以调用一次 countDown 方法就可以释放9个等待的子线程)
    startSignal.countDown();
    // 这行代码使主线程陷入沉睡,等待 9 个子线程执行完成之后才会继续执行(就是等待子线程执行 doneSignal.countDown())
    doneSignal.await();           
    System.out.println("main thread end");
  }
}

执行结果:

Thread-0 begin
Thread-1 begin
Thread-2 begin
Thread-3 begin
Thread-4 begin
Thread-5 begin
Thread-6 begin
Thread-7 begin
Thread-8 begin
main thread begin
Thread-0sleep 5s …………
Thread-1sleep 5s …………
Thread-4sleep 5s …………
Thread-3sleep 5s …………
Thread-2sleep 5s …………
Thread-8sleep 5s …………
Thread-7sleep 5s …………
Thread-6sleep 5s …………
Thread-5sleep 5s …………
Thread-0 end
Thread-1 end
Thread-4 end
Thread-3 end
Thread-2 end
Thread-8 end
Thread-7 end
Thread-6 end
Thread-5 end
main thread end

从执行结果中,可以看出已经实现了以上两个功能,实现比较绕,大家可以根据注释,debug 看一看。

2、Atomic 原子操作类

Atomic 打头的原子操作类有很多,涉及到 Java 常用的数字类型的,基本都有相应的 Atomic 原子操作类,如下图所示:

图片描述

Atomic 打头的原子操作类,在高并发场景下,都是线程安全的,我们可以放心使用。

我们以 AtomicInteger 为例子,来看下主要的底层实现:

private volatile int value;
// 初始化
public AtomicInteger(int initialValue) {
    value = initialValue;
}
// 得到当前值
public final int get() {
    return value;
}
// 自增 1,并返回自增之前的值    
public final int getAndIncrement() {
    return unsafe.getAndAddInt(this, valueOffset, 1);
}
// 自减 1,并返回自增之前的值    
public final int getAndDecrement() {
    return unsafe.getAndAddInt(this, valueOffset, -1);
}

 从源码中,我们可以看到,线程安全的操作方法,底层都是使用 unsafe 方法实现,以上几个 unsafe 方法不是使用 Java 实现的,都是线程安全的。

AtomicInteger 是对 int 类型的值进行自增自减,那如果 Atomic 的对象是个自定义类怎么办呢,Java 也提供了自定义对象的原子操作类,叫做 AtomicReference。AtomicReference 类可操作的对象是个泛型,所以支持自定义类,其底层是没有自增方法的,操作的方法可以作为函数入参传递,源码如下:

// 对 x 执行 accumulatorFunction 操作
// accumulatorFunction 是个函数,可以自定义想做的事情
// 返回老值
public final V getAndAccumulate(V x,
                                BinaryOperator<V> accumulatorFunction) {
    // prev 是老值,next 是新值
    V prev, next;
    // 自旋 + CAS 保证一定可以替换老值
    do {
        prev = get();
        // 执行自定义操作
        next = accumulatorFunction.apply(prev, x);
    } while (!compareAndSet(prev, next));
    return prev;
}

3、总结

CountDownLatch 的源码实现简单,但真的要用好还是不简单的,其使用场景比较复杂,建议同学们可以 debug 一下

CountDownLatchDemo,在增加实战能力基础上,增加底层的理解能力。

以上就是CountDownLatch和Atomic原子操作类源码解析的详细内容,更多关于CountDownLatch和Atomic原子操作类的资料请关注编程网其它相关文章!

--结束END--

本文标题: CountDownLatch和Atomic原子操作类源码解析

本文链接: https://lsjlt.com/news/142234.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作