返回顶部
首页 > 资讯 > 后端开发 > Python >Python图像运算之图像灰度非线性变换详解
  • 536
分享到

Python图像运算之图像灰度非线性变换详解

2024-04-02 19:04:59 536人浏览 泡泡鱼

Python 官方文档:入门教程 => 点击学习

摘要

目录一.图像灰度非线性变换二.图像灰度对数变换三.图像灰度伽玛变换四.总结一.图像灰度非线性变换 原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码

一.图像灰度非线性变换

原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('luo.png')

#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]

#创建一幅图像
result = np.zeros((height, width), np.uint8)

#图像灰度非线性变换:DB=DA×DA/255
for i in range(height):
    for j in range(width):
        gray = int(grayImage[i,j])*int(grayImage[i,j]) / 255
        result[i,j] = np.uint8(gray)

#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)

#等待显示
cv2.waiTKEy(0)
cv2.destroyAllwindows()

图像灰度非线性变换的输出结果如图13-1所示:

二.图像灰度对数变换

图像灰度的对数变换一般表示如公式(13-1)所示:

其中c为尺度比较常数,DA为原始图像灰度值,DB为变换后的目标灰度值。如图13-2所示,它表示对数曲线下的灰度值变化情况,其中x表示原始图像的灰度值,y表示对数变换之后的目标灰度值。

由于对数曲线在像素值较低的区域斜率大,在像素值较高的区域斜率较小,所以图像经过对数变换后,较暗区域的对比度将有所提升。这种变换可用于增强图像的暗部细节,从而用来扩展被压缩的高值图像中的较暗像素。

对数变换实现了扩展低灰度值而压缩高灰度值的效果,被广泛地应用于频谱图像的显示中。一个典型的应用是傅立叶频谱,其动态范围可能宽达0~106直接显示频谱时,图像显示设备的动态范围往往不能满足要求,从而丢失大量的暗部细节;而在使用对数变换之后,图像的动态范围被合理地非线性压缩,从而可以清晰地显示。

在图13-3中,未经变换的频谱经过对数变换后,增加了低灰度区域的对比度,从而增强暗部的细节。

下面的代码实现了图像灰度的对数变换。

# -*- coding: utf-8 -*-
# By:Eastmount
import numpy as np
import matplotlib.pyplot as plt
import cv2

#绘制曲线
def log_plot(c):
    x = np.arange(0, 256, 0.01)
    y = c * np.log(1 + x)
    plt.plot(x, y, 'r', linewidth=1)
    plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
    plt.title('对数变换函数')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.xlim(0, 255), plt.ylim(0, 255)
    plt.show()

#对数变换
def log(c, img):
    output = c * np.log(1.0 + img)
    output = np.uint8(output + 0.5)
    return output

#读取原始图像
img = cv2.imread('dark.png')

#绘制对数变换曲线
log_plot(42)

#图像灰度对数变换
output = log(42, img)

#显示图像
cv2.imshow('Input', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()

图13-4表示经过对数函数处理后的效果图,对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好。

对应的对数函数曲线如图13-5所示,其中x表示原始图像的灰度值,y表示对数变换之后的目标灰度值。

三.图像灰度伽玛变换

伽玛变换又称为指数变换或幂次变换,是另一种常用的灰度非线性变换。图像灰度的伽玛变换一般表示如公式(13-2)所示:

当γ>1时,会拉伸图像中灰度级较高的区域,压缩灰度级较低的部分。

当γ<1时,会拉伸图像中灰度级较低的区域,压缩灰度级较高的部分。

当γ=1时,该灰度变换是线性的,此时通过线性方式改变原图像。

python实现图像灰度的伽玛变换代码如下,主要调用幂函数实现。

# -*- coding: utf-8 -*-
# By:Eastmount
import numpy as np
import matplotlib.pyplot as plt
import cv2

#绘制曲线
def gamma_plot(c, v):
    x = np.arange(0, 256, 0.01)
    y = c*x**v
    plt.plot(x, y, 'r', linewidth=1)
    plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
    plt.title('伽马变换函数')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.xlim([0, 255]), plt.ylim([0, 255])
    plt.show()

#伽玛变换
def gamma(img, c, v):
    lut = np.zeros(256, dtype=np.float32)
    for i in range(256):
        lut[i] = c * i ** v
    output_img = cv2.LUT(img, lut) #像素灰度值的映射
    output_img = np.uint8(output_img+0.5)  
    return output_img

#读取原始图像
img = cv2.imread('white.png')

#绘制伽玛变换曲线
gamma_plot(0.00000005, 4.0)

#图像灰度伽玛变换
output = gamma(img, 0.00000005, 4.0)

#显示图像
cv2.imshow('Imput', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()

图13-6表示经过伽玛变换处理后的效果图,伽马变换对于图像对比度偏低,并且整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显。

对应的伽马变换曲线如图13-7所示,其中x表示原始图像的灰度值,y表示伽马变换之后的目标灰度值。

四.总结

本文主要讲解图像灰度非线性变换,包括图像对数变换和伽马变换。其中,图像经过对数变换后,较暗区域的对比度将有所提升;而案例中经过伽玛变换处理的图像,整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显。这些图像处理方法能有效提升图像的质量,为我们提供更好地感官效果。

到此这篇关于Python图像运算之图像灰度非线性变换详解的文章就介绍到这了,更多相关Python图像灰度变换内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Python图像运算之图像灰度非线性变换详解

本文链接: https://lsjlt.com/news/141947.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Python图像运算之图像灰度非线性变换详解
    目录一.图像灰度非线性变换二.图像灰度对数变换三.图像灰度伽玛变换四.总结一.图像灰度非线性变换 原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码...
    99+
    2024-04-02
  • Python图像运算之图像灰度线性变换详解
    目录一.灰度线性变换二.图像灰度上移变换三.图像对比度增强变换四.图像对比度减弱变换五.图像灰度反色变换六.总结一.灰度线性变换 图像的灰度线性变换是通过建立灰度映射来调整原始图像的...
    99+
    2024-04-02
  • Python图像处理之图像的灰度线性变换
    目录一.图像灰度线性变换原理二.图像灰度上移变换三.图像对比度增强变换四.图像对比度减弱变换五.图像灰度反色变换一.图像灰度线性变换原理 图像的灰度线性变换是通过建立灰度映射来调整原...
    99+
    2024-04-02
  • Python图像运算之图像灰度直方图对比详解
    目录一.灰度增强直方图对比二.灰度减弱直方图对比三.图像反色直方图对比四.图像对数变换直方图对比五.图像阈值化处理直方图对比六.总结一.灰度增强直方图对比 图像灰度上移变换使用的表达...
    99+
    2024-04-02
  • Python图像运算之图像点运算与灰度化处理详解
    目录一.图像点运算概念二.图像灰度化处理三.基于像素操作的图像灰度化处理1.最大值灰度处理方法2.平均灰度处理方法3.加权平均灰度处理方法四.总结一.图像点运算概念 图像点运算(Po...
    99+
    2024-04-02
  • Python中图像灰度非线性变换的示例分析
    这篇文章将为大家详细讲解有关Python中图像灰度非线性变换的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一.图像灰度非线性变换原始图像的灰度值按照DB=DA&times;DA/255的...
    99+
    2023-06-29
  • Python图像灰度变换及图像数组操作
    使用python以及numpy通过直接操作图像数组完成一系列基本的图像处理 numpy简介: NumPy是一个非常有名的 Python 科学计算工具包,其中包含了大量有用的工具,比如数组对象(用来表示向量、...
    99+
    2022-06-04
    图像 灰度 数组
  • Python图像运算之图像阈值化处理详解
    目录一.图像阈值化二.固定阈值化处理1.二进制阈值化2.反二进制阈值化3.截断阈值化4.阈值化为05.反阈值化为0三.自适应阈值化处理四.总结一.图像阈值化 图像阈值化(Binari...
    99+
    2024-04-02
  • Python图像处理之图像算术与逻辑运算详解
    目录一.图像加法运算二.图像减法运算三.图像与运算四.图像或运算五.图像非运算六.图像异或运算七.总结一.图像加法运算 图像加法运算主要有两种方法。第一种是调用Numpy库实现,目标...
    99+
    2024-04-02
  • Python 将RGB图像转换为Pytho灰度图像的实例
    问题: 我正尝试使用matplotlib读取RGB图像并将其转换为灰度。 在matlab中,我使用这个: img = rgb2gray(imread('image.png')); 在matplot...
    99+
    2022-06-04
    图像 灰度 转换为
  • Python图像运算之图像掩膜直方图和HS直方图详解
    目录一.图像掩膜直方图二.图像HS直方图三.直方图判断白天黑夜四.总结一.图像掩膜直方图 如果要统计图像的某一部分直方图,就需要使用掩码(蒙板)来进行计算。假设将要统计的部分设置为白...
    99+
    2024-04-02
  • Python图像处理之图像增广算法详解
    目录前言图像增广算法a.图像旋转b.图像亮度调整c.图像裁剪及拼接本章小结前言 图像增广算法在计算机视觉领域扮演着至关重要的角色。随着深度学习的兴起,大规模数据集的需求变得更加迫切,...
    99+
    2023-05-20
    Python图像增广算法 Python图像处理 Python 算法
  • Python图像运算之顶帽运算和底帽运算详解
    目录一.图像顶帽运算二.图像底帽运算三.总结一.图像顶帽运算 图像顶帽运算(top-hat transformation)又称为图像礼帽运算,它是用原始图像减去图像开运算后的结果,常...
    99+
    2024-04-02
  • Pythonopencv图像基本操作学习之灰度图转换
    把今天的学习的opencv知识先记录一下! 运行环境是:pycharm 话不多说,献上代码再说: import cv2 # opencv读取的格式是BGR import matpl...
    99+
    2023-02-16
    python opencv图片转为灰度图 opencv灰度图转换
  • Python线性点运算数字图像处理示例详解
    目录点运算定义分类线性点运算分段线性点运算非线性点运算对数变换幂次变换点运算 定义 分类 线性点运算 例子: 分段线性点运算 非线性点运算 对数变换 幂次变换 ...
    99+
    2024-04-02
  • Python+OpenCV之图像梯度详解
    目录1. Sobel算子1.1 Sobel介绍1.2 横向Sobel算子1.3 纵向Sobel算子1.4 合并横纵向的方法提取更好的边缘的结果1.5 利用1.3方法绘制素描风格2. ...
    99+
    2024-04-02
  • Python-OpenCV教程之图像的位运算详解
    1、按位取反bitwise_not() 按位取反就是将数值根据每个bit位1变0,0变1,比如0xf0按位取反就变成了0x0f,如果是uint8类型的数据,取反前...
    99+
    2024-04-02
  • Python图像运算之腐蚀与膨胀详解
    目录前言一.形态学理论知识二.图像腐蚀三.图像膨胀四.总结前言 这篇文章将详细讲解开始图像形态学知识,主要介绍图像腐蚀处理和膨胀处理。数学形态学(Mathematical Morph...
    99+
    2024-04-02
  • C++ opencv图像处理实现灰度变换示例
    目录灰度变换概念灰度变换的作用灰度变换的方法灰度化灰度的概念对彩色图进行灰度化1.加权平均值法2.取最大值3.平均值灰度的线性变换1.线性变换2.分段线性变换灰度的非线性变换1.对数...
    99+
    2024-04-02
  • 基于QtOpenCV的图像灰度化像素操作详解
    效果图 实现代码 #ifndef WIDGET_H #define WIDGET_H #include <QWidget> #include<opencv2/o...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作