Python 官方文档:入门教程 => 点击学习
目录一、堆的概念二、向下调整1.建初堆2.建堆三、优先级队列1.什么是优先队列?2.入队列3.出队列4.返回队首元素5.堆的其他TopK问题总结:总结一、堆的概念 堆的定义:n个元素
堆的定义:n个元素的序列{k1 , k2 , … , kn}称之为堆,当且仅当满足以下条件时:
(1)ki >= k2i 且 ki >= k(2i+1) ——大根堆
(2) ki <= k2i 且 ki <= k(2i+1) ——小根堆
简单来说:
堆是具有以下性质的完全二叉树:
(1)每个结点的值都大于或等于其左右孩子结点的值,称为大根堆(如左下图);
或者:
(1)每个结点的值都小于或等于其左右孩子结点的值,称为小根堆(如右下图)。
我们使用数组保存二叉树结构,即是将二叉树用层序遍历方式放入数组中,如上图。
堆的元素下标存在以下关系:
1.假如已知双亲(parent)的下标,则
左孩子(left)下标 = 2parent + 1;
右孩子(right)下标 = 2parent +2;
2.已知孩子(child)(不区分左右)下标,则:
双亲(parent)下标 = (child - 1)/ 2 ;
小结:
设有一个无序序列 {2,5,7,8,4,6,3,0,9,1 },下面通过图解来建初始堆。
这里有一个前提:这棵二叉树的左右子树都必须是一个堆,才能进行调整。
下面是用到的数据的一些说明:
过程文字描述如下:
1.index 如果已经是叶子结点,则整个调整过程结束:
(1)判断 index 位置有没有孩子;
(2) 因为堆是完全二叉树,没有左孩子就一定没有右孩子,所以判断是否有左孩子;
(3) 因为堆的存储结构是数组,所以判断是否有左孩子即判断左孩子下标是否越界,即 left >= size 越界。
2.确定 left 或 right,谁是 index 的最小孩子 min:
(1) 如果右孩子不存在,则 min = left;
(2)否则,比较 array[left] 和 array[right] 值得大小,选择小的为 min;
(3)比较 array[index] 的值 和 array[min] 的值,如果 array[index] <= array[min],则满足堆的性质,调整结束。
3.否则,交换 array[index] 和 array[min] 的值;
4.然后因为 min 位置的堆的性质可能被破坏,所以把 min 视作 index,向下重复以上过程。
通过上面的操作描述,我们写出以下代码:
public static void shiftDown(int[] array, int size, int index){
int left = 2*index +1;
while(left < size){
int min = left;
int right = 2*index +2;
if(right<size){
if(array[right] < array[left]){
min = right;
}
}
if(array[index] <= array[min]){
break;
}
int tmp = array[index];
array[index] = array[min];
array[min] = tmp;
index = min;
left = 2*index +1;
}
}
时间复杂度为 O(log(n))。
下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。
时间复杂度分析:
粗略估算,可以认为是在循环中执行向下调整,为 O(n * log(n)),(了解)实际上是 O(n)。
//建堆代码
public void createHeap(int[] array) {
for (int i = 0; i < array.length; i++) {
elem[i] = array[i];
usedSize++;
}
//根据代码 显示的时间复杂度 看起来 应该是O(n*logn) 但是 实际上是O(n)
for (int parent = (usedSize-1-1)/2; parent >= 0 ; parent--) {
//调整
shiftDown(parent,usedSize);
}
}
根据百科解释:
普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除。在优先队列中,元素被赋予优先级。当访问元素时,具有最高优先级的元素最先删除。优先队列具有最高级先出(first in, largest out)的行为特征。通常采用堆数据结构来实现。
所以我们在这里实现优先队列的内部原理是堆,也就是说采用堆来构建。
过程(以大堆为例):
下面图解:
private void shiftUp(int child) {
int parent = (child-1)/2;
while (child > 0) {
if(elem[child] > elem[parent]) {
int tmp = elem[child];
elem[child] = elem[parent];
elem[parent] = tmp;
child = parent;
parent = (child-1)/2;
}else {
break;
}
}
}
为了防止破坏堆的结构,删除时并不是直接将堆顶元素删除,而是用数组的最后一个元素替换堆顶元素,然后通过向 下调整方式重新调整成堆。
private void shiftUp(int child) {
int parent = (child-1)/2;
while (child > 0) {
if(elem[child] > elem[parent]) {
int tmp = elem[child];
elem[child] = elem[parent];
elem[parent] = tmp;
child = parent;
parent = (child-1)/2;
}else {
break;
}
}
}
public void offer(int val) {
if(isFull()) {
//扩容
elem = Arrays.copyOf(elem,2*elem.length);
}
elem[usedSize++] = val;
//注意这里传入的是usedSize-1
shiftUp(usedSize-1);
}
直接返回堆顶元素
public int peek() {
if(isEmpty()) {
throw new RuntimeException("优先级队列为空!");
}
return elem[0];
}
public boolean isEmpty() {
return usedSize == 0;
}
整体的代码:
public class TestHeap {
public int[] elem;
public int usedSize;
public TestHeap() {
this.elem = new int[10];
}
public void shiftDown(int parent,int len) {
int child = 2*parent+1;
//1、最起码 是有左孩子的,至少有1个孩子
while (child < len) {
if(child+1 < len && elem[child] < elem[child+1]) {
child++;//保证当前左右孩子最大值的下标
}
if(elem[child] > elem[parent]) {
int tmp = elem[child];
elem[child] = elem[parent];
elem[parent] = tmp;
parent = child;
child = 2*parent+1;
}else {
break;
}
}
}
public void createHeap(int[] array) {
for (int i = 0; i < array.length; i++) {
elem[i] = array[i];
usedSize++;
}
//根据代码 显示的时间复杂度 看起来 应该是O(n*logn) 但是 实际上是O(n)
for (int parent = (usedSize-1-1)/2; parent >= 0 ; parent--) {
//调整
shiftDown(parent,usedSize);
}
}
private void shiftUp(int child) {
int parent = (child-1)/2;
while (child > 0) {
if(elem[child] > elem[parent]) {
int tmp = elem[child];
elem[child] = elem[parent];
elem[parent] = tmp;
child = parent;
parent = (child-1)/2;
}else {
break;
}
}
}
public void offer(int val) {
if(isFull()) {
//扩容
elem = Arrays.copyOf(elem,2*elem.length);
}
elem[usedSize++] = val;
//注意这里传入的是usedSize-1
shiftUp(usedSize-1);
}
public boolean isFull() {
return usedSize == elem.length;
}
public int poll() {
if(isEmpty()) {
throw new RuntimeException("优先级队列为空!");
}
int tmp = elem[0];
elem[0] = elem[usedSize-1];
elem[usedSize-1] = tmp;
usedSize--;
shiftDown(0,usedSize);
return tmp;
}
public int peek() {
if(isEmpty()) {
throw new RuntimeException("优先级队列为空!");
}
return elem[0];
}
public boolean isEmpty() {
return usedSize == 0;
}
public void heapSort() {
int end = this.usedSize-1;
while (end > 0) {
int tmp = elem[0];
elem[0] = elem[end];
elem[end] = tmp;
shiftDown(0,end);
end--;
}
}
}
什么是TopK问题?
从arr[1, n]这n个数中,找出最大的k个数,这就是经典的TopK问题。
解决这类问题,我们往往会有以下几种思路:
我们直接讲思路三:
以这个数组{12,15,21,41,30}为例,找到前3个最大的元素。
那如果是将一组进行从小到大排序,我们该采用大根堆还是小根堆?
答案是:大根堆!
步骤如下:
如果求前K个最大的元素,要建一个小根堆。如果求前K个最小的元素,要建一个大根堆。第K大的元素。建一个小堆,堆顶元素就是第K大的元素。第K小的元素。建一个大堆,堆顶元素就是第K小的元素。
public void heapSort() {
int end = this.usedSize-1;
while (end > 0) {
int tmp = elem[0];
elem[0] = elem[end];
elem[end] = tmp;
shiftDown(0,end);
end--;
}
}
public void shiftDown(int parent,int len) {
int child = 2*parent+1;
//1、最起码 是有左孩子的,至少有1个孩子
while (child < len) {
if(child+1 < len && elem[child] < elem[child+1]) {
child++;//保证当前左右孩子最大值的下标
}
if(elem[child] > elem[parent]) {
int tmp = elem[child];
elem[child] = elem[parent];
elem[parent] = tmp;
parent = child;
child = 2*parent+1;
}else {
break;
}
}
}
来来回回,这篇文章写了2-3天了,以前写文章总是蜻蜓点水,不到水深,导致自己对很多的知识也没有多深理解,仅仅是为了写文章而写文章。希望有改变,从这篇文章开始吧!
到此这篇关于Java数据结构之优先级队列(堆)的文章就介绍到这了,更多相关Java优先级队列(堆)内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
--结束END--
本文标题: Java数据结构之优先级队列(堆)图文详解
本文链接: https://lsjlt.com/news/140918.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0