返回顶部
首页 > 资讯 > 后端开发 > Python >python机器学习高数篇之泰勒公式
  • 171
分享到

python机器学习高数篇之泰勒公式

2024-04-02 19:04:59 171人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

不少同学一提到泰勒公式,脑海里立马浮现高大上的定义和长长的公式,令人望而生畏。 实际上,泰勒公式没有那么可怕,它是用简单的多项式来逼近一个光滑的函数,从而近似替代不熟悉的函数。由于泰

不少同学一提到泰勒公式,脑海里立马浮现高大上的定义和长长的公式,令人望而生畏。

实际上,泰勒公式没有那么可怕,它是用简单的多项式来逼近一个光滑的函数,从而近似替代不熟悉的函数。由于泰勒公式具有将复杂函数近似成多个幂函数叠加形式的性质,可以用它进行比较、求极限、求导、解微分方程等。

我们先来看一下泰勒公式的发明者,布鲁克·泰勒——

在这里插入图片描述

布鲁克·泰勒(Brook Taylor,1685-1732),英国数学家,牛顿学派最优秀的代表人物之一,他于1712年的一封信里首次叙述了泰勒公式。

再来看一下高数书上对泰勒公式的定义:

在这里插入图片描述

公式3-5就称为f(x)在x0处的带有拉格朗日余项的n阶泰勒公式。

初看这个泰勒公式的定义,就觉得恢宏大气,气势磅礴。不过光从泰勒公式的定义,很难直观看出它是怎么用多项式逼近原函数的。接下来我们用图像和图表来感受一下——

这里我们先列举出f(x) = cosx在原点的泰勒2阶、4阶、6阶、8阶、10阶的多项式,并用图像表示该函数及其泰勒n阶多项式。

在这里插入图片描述

对应图像如下,其中黑色线条为原函数f(x),彩色线条为多项式g(x)。可以看到随着阶数的增大,多项式在更大范围内越来越逼近原函数。

在这里插入图片描述

我们再用python实现函数y=cosx的泰勒n阶多项式,并与y=cosx的实际值进行比较,其中令n=40。


def f_cos(x):
    m = 20+1
    sum = 1.0
    for i in range(1,m): #range函数取值是左闭右开
        n = 2 * i 
        tmp1,tmp2,tmp3 = 1,1,1
        for j in range(1,i+1):
            tmp1 = -tmp1             
        for j in range(1,n+1):                    
            tmp2 = tmp2*x
            tmp3 = tmp3*j
        sum = sum + tmp1*tmp2/tmp3
    return sum

from numpy import *
for x in range(-20,21):
    print("x = " + str(x))
    print("f_cos(x) = " + str(f_cos(x)))
    print("cos(x) = " + str(cos(x)))

比较自定义的f_cos(x)和numpy库的cosx的误差:

x取值 自定义的f_cos(x) numpy库的cosx 误差(f_cos(x) - cos(x)) 分析
20 2577.3069 0.4081 2576.8988 误差非常大
19 305.1701 0.9887 304.1814 误差较大
18 32.5969 0.6603 31.9366 存在误差
17 2.6676 -0.2752 2.9428 存在误差
16 -0.7234 -0.9577 0.2343 存在0.1级误差
15 -0.7439 -0.7597 0.0158 存在0.01级误差
14 0.1376 0.1367 0.0009 存在0.0001级误差
13 0.9075 0.9074 0.0000 精度范围内一致
12 0.8439 0.8439 0.0000 精度范围内一致
11 0.0044 0.0044 0.0000 精度范围内一致
10 -0.8391 -0.8391 0.0000 精度范围内一致
9 -0.9111 -0.9111 0.0000 精度范围内一致
8 -0.1455 -0.1455 0.0000 精度范围内一致
7 0.7539 0.7539 0.0000 精度范围内一致
6 0.9602 0.9602 0.0000 精度范围内一致
5 0.2837 0.2837 0.0000 精度范围内一致
4 -0.6536 -0.6536 0.0000 精度范围内一致
3 -0.9900 -0.9900 0.0000 精度范围内一致
2 -0.4161 -0.4161 0.0000 精度范围内一致
1 0.5403 0.5403 0.0000 精度范围内一致
0 1.0000 1.0000 0.0000 精度范围内一致

由于f(x) = cosx函数关于y轴对称,这里只列举出了x轴右半部分[0,20]的范围,x轴左半部分的结果与右半部分结果相同。

在[0,20]范围内,当x=20时,二者的误差非常大。随着x的减小,二者的误差也在逐渐减小。在[0,13]范围内,二者在精度范围内完全一致,几乎零误差。

大家可以尝试一下,把n的值调大,这个精度一致的范围会变大。例如此例若n=30,即y=cosx的泰勒30阶多项式,则在[-20,20]范围内,二者精度都完全一致。感兴趣的同学可以运用同样的方法,分析一下其他函数。

再试着写出函数y=sinx的泰勒n阶多项式的Python程序,其中n=19。


def f_sin(x):
    m = 10+1
    sum = 0.0
    for i in range(1,m):
        n = 2 * i - 1     
        tmp1,tmp2,tmp3 = 1,1,1
        for j in range(1,i):
            tmp1 = -tmp1  
        for j in range(1,n+1):          
            tmp2 = tmp2*x
            tmp3 = tmp3*j
        sum = sum + tmp1*tmp2/tmp3 
    return sum

from numpy import *
for x in range(-20,21):
    print("x = " + str(x))
    print("f_sin(x) = " + str(f_sin(x)))
    print("sin(x) = " + str(sin(x)))

后续会继续增加一些函数的泰勒n阶多项式python程序(可能会偷懒)。

最后推荐一个比较好用的在线画函数的工具Desmos:

https://www.desmos.com/calculator?lang=zh-CN

简易教程:

Https://www.ravenxrz.ink/arcHives/27d14722.html

还可以用著名的心形线画个爱心哦:

在这里插入图片描述

到此这篇关于python机器学习高数篇之泰勒公式的文章就介绍到这了,更多相关python泰勒公式内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: python机器学习高数篇之泰勒公式

本文链接: https://lsjlt.com/news/133927.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • python机器学习高数篇之泰勒公式
    不少同学一提到泰勒公式,脑海里立马浮现高大上的定义和长长的公式,令人望而生畏。 实际上,泰勒公式没有那么可怕,它是用简单的多项式来逼近一个光滑的函数,从而近似替代不熟悉的函数。由于泰...
    99+
    2024-04-02
  • python机器学习高数篇之函数极限与导数
    目录函数极限函数极限练习题.1函数极限练习题.2导数python求导数的三种写法方法一方法二方法三不知道大家有没有类似的经历,斗志满满地翻开厚厚的机器学习书,很快被一个个公式炸蒙了。...
    99+
    2024-04-02
  • Python学习-----随机数篇
    目录  一.随机数字 1.随机整数 (1)包含上下限(闭区间) (2)包含下限,不包含上限(下闭上开) (3)设置步长(间隔) randint与randrange区别 2.随机浮点数 (1)0~1之间的浮点数 (2)随机浮点数[a,b] 二...
    99+
    2023-09-03
    学习 python 开发语言
  • Python机器学习应用之朴素贝叶斯篇
    朴素贝叶斯(Naive Bayes,NB):朴素贝叶斯分类算法是学习效率和分类效果较好的分类器之一。朴素贝叶斯算法一般应用在文本分类,垃圾邮件的分类,信用评估,钓鱼网站检测等。 1、...
    99+
    2024-04-02
  • Python机器学习应用之工业蒸汽数据分析篇详解
    目录一、数据集二、数据分析1 数据导入2 数据特征探索(数据可视化)三、特征优化四、对特征构造后的训练集和测试集进行主成分分析五、使用LightGBM模型进行训练和预测一、数据集 1...
    99+
    2024-04-02
  • Python机器学习应用之支持向量机的分类预测篇
    目录1、Question2、Answer!——SVM3、软间隔4、超平面支持向量机常用于数据分类,也可以用于数据的回归预测 1、Question 我们经常会遇...
    99+
    2024-04-02
  • Python科学计算学习之高级数组(二)
    代码性能和向量化   背景:Python是一种解释型的编程语言,基本的python代码不需要任何中间编译过程来得到机器代码,而是直接执行。而对于C、C++等编译性语言就需要在执行代码前将其编译为机器指令。 但是,解释型代码的速度比编译...
    99+
    2023-01-31
    数组 高级 科学
  • Python机器学习之AdaBoost算法
    目录一、算法概述二、算法原理三、算法步骤四、算法实现五、算法优化一、算法概述 AdaBoost 是英文 Adaptive Boosting(自适应增强)的缩写,由 Yoav Freund 和Robert S...
    99+
    2022-06-02
    Python AdaBoost算法 Python机器学习
  • Python机器学习之决策树
    目录一、要求二、原理三、信息增益的计算方法四、实现过程五、程序六、遇到的问题一、要求 二、原理 决策树是一种类似于流程图的结构,其中每个内部节点代表一个属性上的“测试”,每个分支代...
    99+
    2024-04-02
  • Python机器学习入门(二)之Python数据理解
    目录1.数据导入1.1使用标准Python类库导入数据1.2使用Numpy导入数据1.3使用Pandas导入数据2.数据理解2.1数据基本属性2.1.1查看前10行数据2.1.2查看...
    99+
    2024-04-02
  • Python机器学习入门(三)之Python数据准备
    目录1.数据预处理1.1调整数据尺度1.2正态化数据1.3标准化数据1.4二值数据2.数据特征选定2.1单变量特征选定2.2递归特征消除2.3数据降维2.4特征重要性总结特征选择时困...
    99+
    2024-04-02
  • 机器学习之损失函数
    深度学习中常用的损失函数多种多样,具体选择取决于任务类型和问题的性质。以下是一些常见的深度学习任务和相应的常用损失函数: 分类任务: 交叉熵损失函数(Cross-Entropy Loss):用于二分类和多类别分类任务,包括二元交叉熵...
    99+
    2023-08-30
    神经网络 人工智能 深度学习
  • python机器学习之神经网络
    手写数字识别算法 import pandas as pd import numpy as np from sklearn.neural_network import MLPReg...
    99+
    2024-04-02
  • Python机器学习之逻辑回归
    目录一、题目二、目的三、平台四、基本原理4.1 逻辑回归4.2 损失函数五、实验步骤一、题目 1.主题:逻辑回归 2.描述:假设你是某大学招生主管,你想根据两次考试的结果决定每个申请...
    99+
    2024-04-02
  • Python机器学习之基础概述
    目录一、基础概述二、算法分类三、研究内容一、基础概述 机器学习(Machine Learing)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多...
    99+
    2024-04-02
  • ​​​​​​​Python 入门学习之函数式编程
    目录前言把函数作为对象把对象作为函数数据结构内的函数把函数作为参数和返回值嵌套函数单表达式函数(Lambda 表达式)Map、Filter 和 ReduceMapFilterRedu...
    99+
    2024-04-02
  • Python机器学习应用之基于天气数据集的XGBoost分类篇解读
    目录一、XGBoost1 XGBoost的优点2 XGBoost的缺点二、实现过程1 数据集2 实现三、KeysXGBoost的重要参数一、XGBoost XGBoost并不是一种模...
    99+
    2024-04-02
  • Python机器学习应用之基于LightGBM的分类预测篇解读
    目录一、Introduction1 LightGBM的优点2 LightGBM的缺点二、实现过程1 数据集介绍2 Coding三、KeysLightGBM的重要参数基本参数调整针对训...
    99+
    2024-04-02
  • 机器学习篇:Python环境配置和相关模
    Python大环境搭建 https://www.python.org/downloads/windows/ 记住这个路径。(我们不需要自定义安装,而且3.7版本是集成pip以及其他的东西,很方便),下一步点击Install Now ...
    99+
    2023-01-31
    机器 环境 Python
  • 机器学习python实战之手写数字识别
    看了上一篇内容之后,相信对K近邻算法有了一个清晰的认识,今天的内容——手写数字识别是对上一篇内容的延续,这里也是为了自己能更熟练的掌握k-NN算法。 我们有大约2000个训练样本和1000个左右测试样本,训...
    99+
    2022-06-04
    实战 机器 数字
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作