返回顶部
首页 > 资讯 > 后端开发 > Python >用python爬取分析淘宝商品信息详解技术篇
  • 878
分享到

用python爬取分析淘宝商品信息详解技术篇

2024-04-02 19:04:59 878人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

目录背景介绍一、模拟登陆二、爬取商品信息1. 定义相关参数2. 分析并定义正则3. 数据爬取三、简单数据分析1.导入库2.中文显示3.读取数据4.分析价格分布5.分析销售地分布6.词

Tip:本文仅供学习与交流,切勿用于非法用途!!!

背景介绍

有个同学问我:“XXX,有没有办法搜集一下淘宝的商品信息啊,我想要做个统计”。于是乎,闲来无事的我,又开始琢磨起这事…

在这里插入图片描述

一、模拟登陆

兴致勃勃的我,冲进淘宝就准备一顿乱搜:

在这里插入图片描述

在搜索栏里填好关键词:“显卡”,小手轻快敲击着回车键(小样~看我的)
心情愉悦的我等待着返回满满的商品信息,结果苦苦的等待换了的却是302,于是我意外地来到了登陆界面。

在这里插入图片描述

情况基本就是这么个情况了…
然后我查了一下,随着淘宝反爬手段的不断加强,很多小伙伴应该已经发现,淘宝搜索功能是需要用户登陆的!

关于淘宝模拟登陆,有大大已经利用requests成功模拟登陆(感兴趣的小伙伴请往这边>>>requests登陆淘宝<<<)
这个方法得先分析淘宝登陆的各种请求,并模拟生成相应的参数,相对来说有一定的难度。于是我决定换一种思路,通过selenium+二维码的方式:


# 打开图片
def Openimg(img_location):
    img=Image.open(img_location)
    img.show()

# 登陆获取cookies
def Login():  
    driver = WEBdriver.Phantomjs() 
    driver.get('https://login.taobao.com/member/login.jhtml')
    try:
        driver.find_element_by_xpath('/*;q=0.8',
           'Accept-Language':'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2',
           'Accept-Encoding':'gzip, deflate, br',
           'Connection':'keep-alive'}
list_url = 'Http://s.taobao.com/search?q=%(key)s&ie=utf8&s=%(page)d'

2. 分析并定义正则

当请求得到HTML页面后,想要得到我们想要的数据就必须得对其进行提取,这里我选择了正则的方式。通过查看页面源码

在这里插入图片描述

偷懒的我上面只标志了两个数据,不过其他也是类似的,于是得到以下正则:


# 正则模式
p_title = '"raw_title":"(.*?)"'       #标题
p_location = '"item_loc":"(.*?)"'    #销售地
p_sale = '"view_sales":"(.*?)人付款"' #销售量
p_comment = '"comment_count":"(.*?)"'#评论数
p_price = '"view_price":"(.*?)"'     #销售价格
p_nid = '"nid":"(.*?)"'              #商品唯一ID
p_img = '"pic_url":"(.*?)"'          #图片URL

(ps.聪明的小伙伴应该已经发现了,其实商品信息是被保存在了g_page_config变量里面,所以我们也可以先提取这个变量(一个字典),然后再读取数据,也可!)

3. 数据爬取

完事具备,只欠东风。于是,东风来了:


# 数据爬取
key = input('请输入关键字:') # 商品的关键词
N = 20 # 爬取的页数 
data = []
cookies = Login()
for i in range(N):
    try:
        page = i*44
        url = list_url%{'key':key,'page':page}
        res = requests.get(url,headers=headers,cookies=cookies)
        html = res.text
        title = re.findall(p_title,html)
        location = re.findall(p_location,html)
        sale = re.findall(p_sale,html)
        comment = re.findall(p_comment,html)
        price = re.findall(p_price,html)
        nid = re.findall(p_nid,html)
        img = re.findall(p_img,html)
        for j in range(len(title)):
            data.append([title[j],location[j],sale[j],comment[j],price[j],nid[j],img[j]])
        print('-------Page%s complete!--------\n\n'%(i+1))
        time.sleep(3)
    except:
        pass
data = pd.DataFrame(data,columns=['title','location','sale','comment','price','nid','img'])
data.to_csv('%s.csv'%key,encoding='utf-8',index=False)

上面代码爬取20也商品信息,并将其保存在本地的csv文件中,效果是这样的:

在这里插入图片描述

三、简单数据分析

有了数据,放着岂不是浪费,我可是社会主义好青年,怎能做这种事? 那么,就让我们来简单看看这些数据叭:
(当然,数据量小,仅供娱乐参考)

1.导入库


# 导入相关库
import jieba
import operator
import pandas as pd
from Wordcloud import WordCloud
from matplotlib import pyplot as plt

相应库的安装方法(其实基本都能通过pip解决):

  • jieba
  • pandas
  • wordcloud
  • matplotlib

2.中文显示


# matplotlib中文显示
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']

不设置可能出现中文乱码等闹心的情况哦~

3.读取数据


# 读取数据
key = '显卡'
data = pd.read_csv('%s.csv'%key,encoding='utf-8',engine='python')

4.分析价格分布


# 价格分布
plt.figure(figsize=(16,9))
plt.hist(data['price'],bins=20,alpha=0.6)
plt.title('价格频率分布直方图')
plt.xlabel('价格')
plt.ylabel('频数')
plt.savefig('价格分布.png')

价格频率分布直方图:

在这里插入图片描述

5.分析销售地分布


# 销售地分布
group_data = list(data.groupby('location'))
loc_num = {}
for i in range(len(group_data)):
    loc_num[group_data[i][0]] = len(group_data[i][1])
plt.figure(figsize=(19,9))
plt.title('销售地')
plt.scatter(list(loc_num.keys())[:20],list(loc_num.values())[:20],color='r')
plt.plot(list(loc_num.keys())[:20],list(loc_num.values())[:20])
plt.savefig('销售地.png')
sorted_loc_num = sorted(loc_num.items(), key=operator.itemgetter(1),reverse=True)#排序
loc_num_10 = sorted_loc_num[:10]  #取前10
loc_10 = []
num_10 = []
for i in range(10):
    loc_10.append(loc_num_10[i][0])
    num_10.append(loc_num_10[i][1])
plt.figure(figsize=(16,9))
plt.title('销售地TOP10')
plt.bar(loc_10,num_10,facecolor = 'lightskyblue',edgecolor = 'white')
plt.savefig('销售地TOP10.png')

销售地分布:

在这里插入图片描述

销售地TOP10:

在这里插入图片描述

6.词云分析


# 制作词云
content = ''
for i in range(len(data)):
    content += data['title'][i]
wl = jieba.cut(content,cut_all=True)
wl_space_split = ' '.join(wl)
wc = WordCloud('simhei.ttf',
               background_color='white', # 背景颜色
               width=1000,
               height=600,).generate(wl_space_split)
wc.to_file('%s.png'%key)

淘宝商品”显卡“的词云:

在这里插入图片描述

写在最后

感谢各位大大的耐心阅读~

到此这篇关于用Python爬取分析淘宝商品信息详解技术篇的文章就介绍到这了,更多相关python爬取淘宝商品信息内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: 用python爬取分析淘宝商品信息详解技术篇

本文链接: https://lsjlt.com/news/133428.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 用python爬取分析淘宝商品信息详解技术篇
    目录背景介绍一、模拟登陆二、爬取商品信息1. 定义相关参数2. 分析并定义正则3. 数据爬取三、简单数据分析1.导入库2.中文显示3.读取数据4.分析价格分布5.分析销售地分布6.词...
    99+
    2024-04-02
  • 使用Python怎么爬取淘宝的商品信息
    这期内容当中小编将会给大家带来有关使用Python怎么爬取淘宝的商品信息,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。python有哪些常用库python常用的库:1.requesuts;2.scrapy...
    99+
    2023-06-14
  • python项目实战:利用selenium+浏览器爬取淘宝商品信息
    前言今天为大家介绍一个Python利用selenium打开浏览器的方式来爬取淘宝商品的信息,下面就来看看,关于selenium的知识点,是如何做到控制浏览器获取网站的信息导入第三方库...
    99+
    2023-06-02
  • Python爬虫实战之如何采集淘宝商品信息并导入EXCEL表格
    本篇内容主要讲解“Python爬虫实战之如何采集淘宝商品信息并导入EXCEL表格”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python爬虫实战之如何采集淘宝商品信息并导入EXCEL表格”吧!...
    99+
    2023-06-16
  • 用python来爬取某鱼的商品信息(1/2)
    目录 前言 第一大难题——找到网站入口 曲线救国  模拟搜索 第二大难题——登录 提一嘴 登录cookie获取 第一种 第二种  第四大难题——无法使用导出的cookie  原因 解决办法 最后 出现小问题 总结 下一篇博客(大部分代码实现...
    99+
    2023-08-31
    python 开发语言
  • 用python来爬取某鱼的商品信息(2/2)
    目录 上一篇文章 本章内容 设置浏览器为运行结束后不关闭(可选) 定位到搜索框的xpath地址 执行动作 获取cookie 保存为json文件 修改cookie的sameSite值并且导入cookie 导入cookie(出错) 导入cook...
    99+
    2023-08-31
    python 开发语言 爬虫 selenium html
  • 详解如何使用Python网络爬虫获取招聘信息
    目录前言项目目标项目准备反爬措施项目实现效果展示小结前言 现在在疫情阶段,想找一份不错的工作变得更为困难,很多人会选择去网上看招聘信息。可是招聘信息有一些是错综复杂的。而且不能把全部...
    99+
    2024-04-02
  • Python爬取用户观影数据并分析用户与电影之间的隐藏信息!
    一、前言 二、爬取观影数据 https://movie.douban.com/ 在『豆瓣』平台爬取用户观影数据。 爬取用户列表 网页分析 为了获取用户,我选择了其中一部...
    99+
    2024-04-02
  • Python大神利用正则表达式教你搞定京东商品信息的示例分析
    Python大神利用正则表达式教你搞定京东商品信息的示例分析,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。京东(JD.com)是中国最大的自营式电商企业,2015年第一季度在中...
    99+
    2023-06-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作