返回顶部
首页 > 资讯 > 后端开发 > Python >Java提效神器Stream的一些冷门技巧汇总
  • 941
分享到

Java提效神器Stream的一些冷门技巧汇总

2024-04-02 19:04:59 941人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

目录StreamFilterForeachMapSortedMatchcountreduceparallelStreamIntStream.range(a,b)new Random(

Stream

使用这个方法创建一个 Stream 对象。


new ArrayList<>().stream()

Filter

过滤器,里面传递一个函数,这个函数的返回结果如果为 true 则保留这个元素,否则的话丢弃这个元素。


        strinGCollection
                .stream()
                .filter((s) -> s.startsWith("a"))
                .forEach(System.out::println);

Foreach

遍历,消费。


        stringCollection
                .stream()
                .filter((s) -> s.startsWith("a"))
                .forEach(System.out::println);

Map

这个功能也是遍历,但是他是有返回值的,而上面的 Foreach 是没有返回值的,仅仅是单纯的消费。而且 Foreach 不能够链式调用,因为没有返回值,但是 Map 没问题。


        stringCollection
                .stream()
                .map(String::toUpperCase)
                .sorted(Comparator.reverseOrder())
                .forEach(System.out::println);

Sorted

这个方法是用来排序的,里面传递的函数就是一个比较器,也可以不传递参数,使用默认的就好。


        stringCollection
                .stream()
                .sorted(( x, y)-> y.length()-x.length())
                .filter((s) -> s.startsWith("a"))
                .forEach(System.out::println);

Match

根据在给定的 stream 对象中是否含有指定内容返回 true 或者 false 。

具体的有:

  • allMatch
  • anyMatch
  • noneMatch

        boolean anyStartsWithA = stringCollection
                .stream()
                .anyMatch((s) -> s.startsWith("a"));

        boolean allStartsWithA = stringCollection
                .stream()
                .allMatch((s) -> s.startsWith("a"));

        boolean noneStartsWithZ = stringCollection
                .stream()
                .noneMatch((s) -> s.startsWith("z"));

count

计算集合中的元素的个数。


long startsWithB = stringCollection
        .stream()
        .filter((s) -> s.startsWith("b"))
        .count();

reduce

这个函数就是类似于斐波那契数列,每次传递的参数是上一次的结果和从集合中取出的新元素。第一次默认取出了第一个元素和第二个元素。

简单的例子就是,第一次取出 0,1 第二次取出 第一次reduce的结果作为第一个参数,取出 2 作为第二个参数,以此类推。


Optional<String> reduced =
        stringCollection
                .stream()
                .sorted()
                .reduce((s1, s2) -> s1 + "#" + s2);

parallelStream

并行的 steam 流,可以进行并行处理,这样会效率更高。在使用stream.foreach时这个遍历没有线程安全问题,但是使用parallelStream就会有线程安全问题,所有在parallelStream里面使用的外部变量,比如集合一定要使用线程安全集合,不然就会引发多线程安全问题。如果说需要保证安全性需要使用 reduce 和 collect,不过这个用起来超级麻烦!!!


long count = values.parallelStream().sorted().count();

IntStream.range(a,b)

可以直接生成 从 a 到 b 的整数这里还是遵循编程语言的大多数约定,那就是含头不含尾。


IntStream.range(0, 10)
    .forEach(System.out::println);

输出的结果是

0
1
2
3
4
5
6
7
8
9

new Random().ints()

获取一系列的随机值,这个接口出来的数据是连续不断的,所以需要用limit来限制一下。


new Random().ints().limit(10).forEach(System.out::println);

Supplier


Supplier<String> stringSupplier=String::new;
stringSupplier.get();

该接口就一个抽象方法get方法,不用传入任何参数,直接返回一个泛型T的实例.就如同无参构造一样

Consumer

1.    accept方法

​        该函数式接口的唯一的抽象方法,接收一个参数,没有返回值.

2.    andThen方法

        在执行完调用者方法后再执行传入参数的方法.


public class ConsumerTest {
    public static void main(String[] args) {
        Consumer<Integer> consumer = (x) -> {
            int num = x * 2;
            System.out.println(num);
        };
        Consumer<Integer> consumer1 = (x) -> {
            int num = x * 3;
            System.out.println(num);
        };
        consumer.andThen(consumer1).accept(10);
    }

先执行了 consumer.accept(10) 然后执行了 consumer1.accept(10)

ifPresent

针对一个optional 如果有值的话就执行否则不执行。


IntStream
    .builder()
    .add(1)
    .add(3)
    .add(5)
    .add(7)
    .add(11)
    .build()
    .average()
    .ifPresent(System.out::println);

average 执行结果就是一个 optional

Collect

他有两种调用方式


  <R> R collect(Supplier<R> supplier,
                  BiConsumer<R, ? super T> accumulator,
                  BiConsumer<R, R> combiner);

 <R, A> R collect(Collector<? super T, A, R> collector);

下面主要介绍一下这两种方式的使用方法:

1. 函数

第一种调用方式的接口如下


  <R> R collect(Supplier<R> supplier,
                  BiConsumer<R, ? super T> accumulator,
                  BiConsumer<R, R> combiner);
  • supplier 这个参数就是提供一个容器,可以看到最后 collect 操作的结果是一个 R 类型变量,而 supplier 接口最后需要返回的也是一个 R 类型的变量,所以说这里返回的是收集元素的容器。
  • accumulator 参数,看到这个函数的定义是传入一个 R 容器,后面则是 T 类型的元素,需要将这个 T 放到 R 容器中,即这一步是用来将元素添加到容器中的操作。
  • conbiner 这个参数是两个容器,即当出现多个容器的时候容器如何进行聚合。

一个简单的例子:


String concat = stringStream.collect(StringBuilder::new, StringBuilder::append,StringBuilder::append).toString();
//等价于上面,这样看起来应该更加清晰
String concat = stringStream.collect(() -> new StringBuilder(),(l, x) -> l.append(x), (r1, r2) -> r1.append(r2)).toString();

2. Collector 接口

第二种方案是更高级的用法采用了 Collector 接口:


 <R, A> R collect(Collector<? super T, A, R> collector);

可以看到他返回的还是一个 R 类型的变量,也就是容器。

Collector接口是使得collect操作强大的终极武器,对于绝大部分操作可以分解为旗下主要步骤,提供初始容器->加入元素到容器->并发下多容器聚合->对聚合后结果进行操作


static class CollectorImpl<T, A, R> implements Collector<T, A, R> {
        private final Supplier<A> supplier;
        private final BiConsumer<A, T> accumulator;
        private final BinaryOperator<A> combiner;
        private final Function<A, R> finisher;
        private final Set<Characteristics> characteristics;

        CollectorImpl(Supplier<A> supplier,
                      BiConsumer<A, T> accumulator,
                      BinaryOperator<A> combiner,
                      Function<A,R> finisher,
                      Set<Characteristics> characteristics) {
            this.supplier = supplier;
            this.accumulator = accumulator;
            this.combiner = combiner;
            this.finisher = finisher;
            this.characteristics = characteristics;
        }

        CollectorImpl(Supplier<A> supplier,
                      BiConsumer<A, T> accumulator,
                      BinaryOperator<A> combiner,
                      Set<Characteristics> characteristics) {
            this(supplier, accumulator, combiner, castingIdentity(), characteristics);
        }

        @Override
        public BiConsumer<A, T> accumulator() {
            return accumulator;
        }

        @Override
        public Supplier<A> supplier() {
            return supplier;
        }

        @Override
        public BinaryOperator<A> combiner() {
            return combiner;
        }

        @Override
        public Function<A, R> finisher() {
            return finisher;
        }

        @Override
        public Set<Characteristics> characteristics() {
            return characteristics;
        }
    }

可以看到我们可以直接 new CollectorImpl 然后将这些函数传入,另外还有一种简单的方式就是 使用 Collector.of()依然可以直接传入函数。和 new CollectorImpl 是等价的。

3. 工具函数

1. toList()

容器: ArrayList::new

加入容器操作: List::add

多容器合并: left.addAll(right); return left;


   public static <T>
    Collector<T, ?, List<T>> toList() {
        return new CollectorImpl<>((Supplier<List<T>>) ArrayList::new, List::add,
                                   (left, right) -> { left.addAll(right); return left; },
                                   CH_ID);
    }

2.joining()

容器: StringBuilder::new

加入容器操作: StringBuilder::append

多容器合并: r1.append(r2); return r1;

聚合后的结果操作: StringBuilder::toString


    public static Collector<CharSequence, ?, String> joining() {
        return new CollectorImpl<CharSequence, StringBuilder, String>(
                StringBuilder::new, StringBuilder::append,
                (r1, r2) -> { r1.append(r2); return r1; },
                StringBuilder::toString, CH_NOID);
    }

3.groupingBy()

roupingBy是toMap的一种高级方式,弥补了toMap对值无法提供多元化的收集操作,比如对于返回Map<T,List<E>>这样的形式toMap就不是那么顺手,那么groupingBy的重点就是对Key和Value值的处理封装.分析如下代码,其中classifier是对key值的处理,mapFactory则是指定Map的容器具体类型,downstream为对Value的收集操作.


   public static <T, K, D, A, M extends Map<K, D>>
    Collector<T, ?, M> groupingBy(Function<? super T, ? extends K> classifier,
                                  Supplier<M> mapFactory,
                                  Collector<? super T, A, D> downstream) {
       .......
    }

一个简单的例子


//原生形式
   Lists.<Person>newArrayList().stream()
        .collect(() -> new HashMap<Integer,List<Person>>(),
            (h, x) -> {
              List<Person> value = h.getOrDefault(x.getType(), Lists.newArrayList());
              value.add(x);
              h.put(x.getType(), value);
            },
            HashMap::putAll
        );
//groupBy形式
Lists.<Person>newArrayList().stream()
        .collect(Collectors.groupingBy(Person::getType, HashMap::new, Collectors.toList()));
//因为对值有了操作,因此我可以更加灵活的对值进行转换
Lists.<Person>newArrayList().stream()
        .collect(Collectors.groupingBy(Person::getType, HashMap::new, Collectors.mapping(Person::getName,Collectors.toSet())));
// 还有一种比较简单的使用方式 只需要传递一个参数按照key来划分
Map<Integer, List<Person>> personsByAge = persons
            .stream()
    .collect(Collectors.groupingBy(p -> p.age));

4.reducing()

reducing是针对单个值的收集,其返回结果不是集合家族的类型,而是单一的实体类T

容器: boxSupplier(identity),这里包裹用的是一个长度为1的Object[]数组,至于原因自然是不可变类型的锅

加入容器操作: a[0] = op.apply(a[0], t)

多容器合并: a[0] = op.apply(a[0], b[0]); return a;

聚合后的结果操作: 结果自然是Object[0]所包裹的数据a -> a[0]

优化操作状态字段: CH_NOID


  public static <T> Collector<T, ?, T>
    reducing(T identity, BinaryOperator<T> op) {
        return new CollectorImpl<>(
                boxSupplier(identity),
                (a, t) -> { a[0] = op.apply(a[0], t); },
                (a, b) -> { a[0] = op.apply(a[0], b[0]); return a; },
                a -> a[0],
                CH_NOID);
    }

简单来说这个地方做的事情和 reduce 是一样的,第一个 id 传入的就是 reduce 的初始值,只是他把它包装成一个 长度为1的数组了。


//原生操作
final Integer[] integers = Lists.newArrayList(1, 2, 3, 4, 5)
        .stream()
        .collect(() -> new Integer[]{0}, (a, x) -> a[0] += x, (a1, a2) -> a1[0] += a2[0]);
//reducing操作
final Integer collect = Lists.newArrayList(1, 2, 3, 4, 5)
        .stream()
        .collect(Collectors.reducing(0, Integer::sum));    
//当然Stream也提供了reduce操作
final Integer collect = Lists.newArrayList(1, 2, 3, 4, 5)
        .stream().reduce(0, Integer::sum)

总结

到此这篇关于Java提效神器Stream的一些冷门技巧的文章就介绍到这了,更多相关Java Stream技巧内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Java提效神器Stream的一些冷门技巧汇总

本文链接: https://lsjlt.com/news/129871.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Java提效神器Stream的一些冷门技巧汇总
    目录StreamFilterForeachMapSortedMatchcountreduceparallelStreamIntStream.range(a,b)new Random(...
    99+
    2024-04-02
  • Java中Stream的一些技巧分享
    这篇文章主要介绍“Java中Stream的一些技巧分享”,在日常操作中,相信很多人在Java中Stream的一些技巧分享问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java中Stream的一些技巧分享”的疑...
    99+
    2023-06-20
  • 一些常用的Python爬虫技巧汇总
    Python爬虫:一些常用的爬虫技巧总结 爬虫在开发过程中也有很多复用的过程,这里总结一下,以后也能省些事情。 1、基本抓取网页 get方法 import urllib2 url "http://w...
    99+
    2022-06-04
    爬虫 常用 技巧
  • Pandas提高数据分析效率的13个技巧汇总
    目录1.计算变量缺失率2.获取分组里最大值所在的行方法3.多列合并为一行4.删除包含特定字符串所在的行5.组内排序6.选择特定类型的列7.字符串转换为数值8.优化 DataFrame...
    99+
    2024-04-02
  • nodejs代码执行绕过的一些技巧汇总
    目录1. child_process2. nodejs中的命令执行2.1 16进制编码2.2 unicode编码2.3 加号拼接2.4 模板字符串2.5 concat连接2.6 ba...
    99+
    2024-04-02
  • pandas提升计算效率的一些方法汇总
    前言 Pandas是为一次性处理整个行或列的矢量化操作而设计的,循环遍历每个单元格、行或列并不是它的设计用途。所以,在使用Pandas时,你应该考虑高度可并行化的矩阵运算。 一、避...
    99+
    2024-04-02
  • 提高效率的Java代码小技巧有哪些
    提高效率的Java代码小技巧有哪些,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。前言代码优化 ,一个很重要的课题。可能有些人觉得没用,一些细小的地方有什么好修改的,改与不改...
    99+
    2023-06-16
  • 提升开发效率的Java命令行技巧有哪些
    本篇内容主要讲解“提升开发效率的Java命令行技巧有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“提升开发效率的Java命令行技巧有哪些”吧!Mac 环境z...
    99+
    2024-04-02
  • PHP ZipArchive 扩展的技巧和窍门:提高效率的秘密武器
    PHP ZipArchive 扩展是一个强大的工具,允许您操作和管理 ZIP 存档。通过充分利用其功能,您可以显著提高处理 ZIP 文件的效率。以下是一些实用技巧和窍门: 1. 异步 Zip 创建和解压 默认情况下,ZipArchive...
    99+
    2024-03-08
    PHP ZipArchive 优化 性能 效率 技巧
  • 编写高效的日志处理算法,Java容器中有哪些技巧?
    在现代软件系统中,日志处理是非常重要的一环。日志记录了系统的运行状态、错误信息以及其他有用的数据,对于排查问题、分析系统性能和安全审计等方面都有着重要的作用。因此,如何编写高效的日志处理算法,成为了每个程序员必须掌握的技能之一。 Java...
    99+
    2023-07-29
    容器 日志 编程算法
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作