返回顶部
首页 > 资讯 > 后端开发 > Python >深入理解Java中的HashMap
  • 935
分享到

深入理解Java中的HashMap

2024-04-02 19:04:59 935人浏览 泡泡鱼

Python 官方文档:入门教程 => 点击学习

摘要

目录一、HashMap的结构图示二、HashMap的成员变量以及含义2.1、hash方法说明2.2、tableSizeFor方法说明三、HashMap的构造方法四、HashMap元素

一、HashMap的结构图示

​本文主要说的是jdk1.8版本中的实现。而1.8中HashMap是数组+链表+红黑树实现的,大概如下图所示。后面还是主要介绍Hash Map中主要的一些成员以及方法原理。

​那么上述图示中的结点node具体类型是什么,源码如下。Node是HashMap的内部类,实现了Map.Entery接口,主要就是存放我们put方法所添加的元素。其中的next就表示这可以构成一个单向链表,这主要是通过链地址法解决发生hash冲突问题。而当桶中的元素个数超过阈值的时候就换转为红黑树。


//hash桶中的结点Node,实现了Map.Entry
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next; //链表的next指针
    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
    public final K geTKEy()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }
    //重写Object的hashCode
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    //equals方法
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}
//转变为红黑树后的结点类
static final class TreeNode<k,v> extends LinkedHashMap.Entry<k,v> {
    TreeNode<k,v> parent;  // 父节点
    TreeNode<k,v> left; //左子树
    TreeNode<k,v> right;//右子树
    TreeNode<k,v> prev;    // needed to unlink next upon deletion
    boolean red;    //颜色属性
    TreeNode(int hash, K key, V val, Node<k,v> next) {
        super(hash, key, val, next);
    }
    //返回当前节点的根节点
    final TreeNode<k,v> root() {
        for (TreeNode<k,v> r = this, p;;) {
            if ((p = r.parent) == null)
                return r;
            r = p;
        }
    }
}

​上面只是大概了解了一下HashMap的简单组成,下面主要介绍其中的一些参数和重要的方法原理实现。

二、HashMap的成员变量以及含义


//默认初始化容量初始化=16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//最大容量 = 1 << 30
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认加载因子.一般HashMap的扩容的临界点是当前HashMap的大小 > DEFAULT_LOAD_FACTOR * 
//DEFAULT_INITIAL_CAPACITY = 0.75F * 16
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//当hash桶中的某个bucket上的结点数大于该值的时候,会由链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
//当hash桶中的某个bucket上的结点数小于该值的时候,红黑树转变为链表
static final int UNTREEIFY_THRESHOLD = 6;
//桶中结构转化为红黑树对应的table的最小大小
static final int MIN_TREEIFY_CAPACITY = 64;
//hash算法,计算传入的key的hash值,下面会有例子说明这个计算的过程
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
} 
//tableSizeFor(initialCapacity)返回大于initialCapacity的最小的二次幂数值。下面会有例子说明
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
//hash桶
transient Node<K,V>[] table;
//保存缓存的entrySet
transient Set<Map.Entry<K,V>> entrySet;
//桶的实际元素个数 != table.length
transient int size;
//扩容或者更改了map的计数器。含义:表示这个HashMap结构被修改的次数,结构修改是那些改变HashMap中的映射数量或者
//修改其内部结构(例如,重新散列rehash)的修改。 该字段用于在HashMap失败快速(fast-fail)的Collection-views
//上创建迭代器。
transient int modCount;
//临界值,当实际大小(cap*loadFactor)大于该值的时候,会进行扩充
int threshold;
//加载因子
final float loadFactor;

2.1、hash方法说明


//hash算法
static final int hash(Object key) {
    int h;
    //key == null : 返回hash=0
    //key != null 
    //(1)得到key的hashCode:h=key.hashCode()
    //(2)将h无符号右移16位
    //(3)异或运算:h ^ h>>>16
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}   

​假设现在我们向一个map中添加元素,例如map.put("fsmly","test"),那么其中key为"fsmly"的hashCode的二进制表示为0000_0000_0011_0110_0100_0100_1001_0010,按照上面的步骤来计算,那么我们调用hash算法得到的hash值为:‭

2.2、tableSizeFor方法说明

​该方法的作用就是:返回大于initialCapacity的最小的二次幂数值。如下实例


//n=cap-1=5; 5的二进制0101B。>>> 操作符表示无符号右移,高位取0
//n |= n>>>1: (1)n=0101 | 0101>>>1; (2)n=0101 | 0010; (3)n = 0111B 
//n |= n>>>2: (1)n=0111 | 0111>>>2; (2)n=0111 | 0011; (3)n = 0111B
//n |= n>>>4: (1)n=0111 | 0111>>>4; (2)n=0111 | 0000; (3)n = 0111B
//n |= n>>>8: (1)n=0111 | 0111>>>8; (2)n=0111 | 0000; (3)n = 0111B
//n |= n>>>16:(1)n=0111 | 0111>>>16;(2)n=0111 | 0000; (3)n = 0111B
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    //n<0返回1
    //n>最大容量,返回最大容量
    //否则返回n+1(0111B+1B=1000B=8)
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

​再看下面这个:


//至于这里为什么减1,当传入的cap为2的整数次幂的时候,减1即保证最后的计算结果还是cap,而不是大于cap的另一个2的
//整数次幂,例如我们传入cap=16=10000B.按照上面那样计算
//n=cap-1=15=1111B.按照上面的方法计算得到:
// n |= n>>>1: n=1111|0111=1111;后面还是相同的结果最后n=1111B=15.
//所以返回的时候为return 15+1;
int n = cap - 1; 

三、HashMap的构造方法

​我们看看HashMap源码中为我们提供的四个构造方法。我们可以看到,平常我们最常用的无参构造器内部只是仅仅初始化了loadFactor,别的都没有做,底层的数据结构则是延迟到插入键值对时再进行初始化,或者说在resize中会做。后面说到扩容方法的实现的时候会讲到。


//(1)参数为初始化容量和加载因子的构造函数
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity); //阈值为大于initialCapacity的最小二次幂
}
//(2)只给定初始化容量,那么加载因子就是默认的加载因子:0.75
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//(3)加载因子为默认的加载因子,但是这个时候的初始化容量是没有指定的,后面调用put或者get方法的时候才resize
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
//(4)将传递的map中的值调用putMapEntries加入新的map集合中,其中加载因子是默认的加载因子
public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

四、HashMap元素在数组中的位置

​不管增加、删除、查找键值对,定位到哈希桶数组的索引都是很关键的第一步,所以我们看看源码怎样通过hash()方法以及其他代码确定一个元素在hash桶中的位置的。


//计算map中key的hash值
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
//这一小段代码就是定位元素在桶中的位置。具体做法就是:容量n-1 & hash. 
//其中n是一个2的整数幂,而(n - 1) & hash其实质就是hash%n,但
//是取余运算的效率不如位运算与,并且(n - 1) & hash也能保证散列均匀,不会产生只有偶数位有值的现象
p = tab[i = (n - 1) & hash];

​下面我们通过一个例子计算一下上面这个定位的过程,假设现在桶大小n为16.

​我们可以看到,这里的hash方法并不是用原有对象的hashcode最为最终的hash值,而是做了一定位运算,大概因为如果(n-1)的值太小的话,(n - 1) & hash的值就完全依靠hash的低位值,比如n-1为0000 1111,那么最终的值就完全依赖于hash值的低4位了,这样的话hash的高位就玩完全失去了作用,h ^ (h >>> 16),通过这种方式,让高位数据与低位数据进行异或,也是变相的加大了hash的随机性,这样就不单纯的依赖对象的hashcode方法了。

五、HashMap的put方法分析

5.1、put方法源码分析


public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab;  Node<K,V> p;  int n, i;
    //table == null 或者table的长度为0,调用resize方法进行扩容
    //这里也说明:table 被延迟到插入新数据时再进行初始化
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 这里就是调用了Hash算法的地方,具体的计算可参考后面写到的例子
    //这里定位坐标的做法在上面也已经说到过
    if ((p = tab[i = (n - 1) & hash]) == null)
        // 如果计算得到的桶下标值中的Node为null,就新建一个Node加入该位置(这个新的结点是在
        //table数组中)。而该位置的hash值就是调用hash()方法计算得到的key的hash值
        tab[i] = newNode(hash, key, value, null);
    //这里表示put的元素用自己key的hash值计算得到的下表和桶中的第一个位置元素产生了冲突,具体就是
    //(1)key相同,value不同
    //(2)只是通过hash值计算得到的下标相同,但是key和value都不同。这里处理的方法就是链表和红黑树
    else {
        Node<K,V> e; K k;
        //上面已经计算得到了该hash对应的下标i,这里p=tab[i]。这里比较的有:
        //(1)tab[i].hash是否等于传入的hash。这里的tab[i]就是桶中的第一个元素
        //(2)比较传入的key和该位置的key是否相同
        //(3)如果都相同,说明是同一个key,那么直接替换对应的value值(在后面会进行替换)
        if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
            //将桶中的第一个元素赋给e,用来记录第一个位置的值
            e = p;
        //这里判断为红黑树。hash值不相等,key不相等;为红黑树结点
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); //加入红黑树
        //判断为链表结点
        else {
            for (int binCount = 0; ; ++binCount) {
                //如果达到链表的尾部
                if ((e = p.next) == null) {
                    //在尾部插入新的结点
                    p.next = newNode(hash, key, value, null);
                    //前面的binCount是记录链表长度的,如果该值大于8,就会转变为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                //如果在遍历链表的时候,判断得出要插入的结点的key和链表中间的某个结点的key相
                //同,就跳出循环,后面也会更新旧的value值
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                //e = p.next。遍历链表所用
                p = e;
            }
        }
        //判断插入的是否存在HashMap中,上面e被赋值,不为空,则说明存在,更新旧的键值对
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value; //用传入的参数value更新旧的value值
            afterNodeAccess(e);
            return oldValue; //返回旧的value值
        }
    }
    //modCount修改
    ++modCount;
    //容量超出就扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

5.2、put方法执行过程总结

​可以看到主要逻辑在put方法中调用了putVal方法,传递的参数是调用了hash()方法计算key的hash值,主要逻辑在putVal中。可以结合注释熟悉这个方法的执行,我在这里大概总结一下这个方法的执行:

1.首先 (tab = table) == null || (n = tab.length) == 0这一块判断hash桶是否为null,如果为null那么会调用resize方法扩容。后面我们会说到这个方法

2.定位元素在桶中的位置,具体就是通过key的hash值和hash桶的长度计算得到下标i,如果计算到的位置处没有元素(null),那么就新建结点然后添加到该位置。

3.如果table[i]处不为null,已经有元素了,那么就表明产生hash冲突,这里可能是三种情况

①判断key是不是一样,如果key一样,那么就将新的值替换旧的值;

②如果不是因为key一样,那么需要判断当前该桶是不是已经转为了红黑树,是的话就构造一个TreeNode结点插入红黑树;

③不是红黑树,就使用链地址法处理冲突问题。这里主要就是遍历链表,如果在遍历过程中也找到了key一样的元素,那么久还是使用新值替换旧值。否则会遍历到链表结尾处,到这里就直接新添加一个Node结点插入链表,插入之后还需要判断是不是已将超过了转换为红黑树的阈值8,如果超过就会转为红黑树。

4.最后需要修改modCount的值。

5.判断插入后的size大小是不是超过了threshhold,如果超过需要进行扩容。

上面很多地方都涉及到了扩容,所以下面我们首先看看扩容方法。

六、HashMap的resize方法分析

6.1、resize方法源码

​扩容(resize)就是重新计算容量,具体就是当map内部的size大于DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY ,就需要扩大数组的长度,以便能装入更多的元素。resize方法实现中是使用一个新的数组代替已有的容量小的数组。


//该方法有2种使用情况:1.初始化哈希表(table==null) 2.当前数组容量过小,需扩容
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table; //oldTab指向旧的table数组
    //oldTab不为null的话,oldCap为原table的长度
    //oldTab为null的话,oldCap为0
    int oldCap = (oldTab == null) ? 0 : oldTab.length; 
    int oldThr = threshold; //阈值
    int newCap, newThr = 0;
    if (oldCap > 0) { 
        //这里表明oldCap!=0,oldCap=原table.length();
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE; //如果大于最大容量了,就赋值为整数最大的阀值
            return oldTab;
        }
        // 如果数组的长度在扩容后小于最大容量 并且oldCap大于默认值16(这里的newCap也是在原来的
        //长度上扩展两倍)
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold双倍扩展threshhold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        //	这里的oldThr=tabSizeFor(initialCapacity),从上面的构造方法看出,如果不是调用的
        //无参构造,那么threshhold肯定都会是经过tabSizeFor运算得到的2的整数次幂的,所以可以将
        //其作为Node数组的长度(个人理解)
        newCap = oldThr; 
    else { // zero initial threshold signifies using defaults(零初始阈值表示使用默认值)
        //这里说的是我们调用无参构造函数的时候(table == null,threshhold = 0),新的容量等于默
        //认的容量,并且threshhold也等于默认加载因子*默认初始化容量
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 计算新的resize上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor; //容量 * 加载因子
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    //以新的容量作为长度,创建一个新的Node数组存放结点元素
    //当然,桶数组的初始化也是在这里完成的
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; 
    table = newTab;
    //原来的table不为null
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            //原table中下标j位置不为null
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null; //将原来的table[j]赋为null,及时GC?
                if (e.next == null) //如果该位置没有链表,即只有数组中的那个元素
                    //通过新的容量计算在新的table数组中的下标:(n-1)&hash
                    newTab[e.hash & (newCap - 1)] = e; 
                else if (e instanceof TreeNode) 
                    //如果是红黑树结点,重新映射时,需要对红黑树进行拆分
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // 链表优化重hash的代码块
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {//上面判断不是红黑树,那就是链表,这里就遍历链表,进行重新映射
                        next = e.next;
                        // 原位置
                        if ((e.hash & oldCap) == 0) {
                            //loTail处为null,那么直接加到该位置
                            if (loTail == null) 
                                loHead = e;
                            //loTail为链表尾结点,添加到尾部
                            else
                                loTail.next = e;
                            //添加后,将loTail指向链表尾部,以便下次从尾部添加
                            loTail = e;
                        }
                        // 原位置+旧容量
                        else {
                            //hiTail处为null,就直接点添加到该位置
                            if (hiTail == null)
                                hiHead = e;
                            //hiTail为链表尾结点,尾插法添加
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 将分组后的链表映射到新桶中
                    // 原索引放到bucket里
                    if (loTail != null) {
                        //旧链表迁移新链表,链表元素相对位置没有变化; 
                        //实际是对对象的内存地址进行操作 
                        loTail.next = null;//链表尾元素设置为null
                        newTab[j] = loHead; //数组中位置为j的地方存放链表的head结点
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

6.2、(e.hash & oldCap) == 0分析

​我这里添加上一点,就是为什么使用 (e.hash & oldCap) == 0判断是处于原位置还是放在更新的位置(原位置+旧容量),解释如下:我们知道capacity是2的幂,所以oldCap为10...0的二进制形式(比如16=10000B)。

(1)若判断条件为真,意味着oldCap为1的那位对应的hash位为0(1&0=0,其他位都是0,结果自然是0),对新索引的计算没有影响,至于为啥没影响下面就说到了。先举个例子计算一下数组中的下标在扩容前后的变化:

​从上面计算发现,当cap为1的那位对应的hash为0的时候,resize前后的index是不变的。我们再看下面,使用上面的hash值,对应的就是 (e.hash & oldCap) == 0,恰好也是下标不变的

​(2)若判断条件为假,则 oldCap为1的那位对应的hash位为1。比如新下标=hash&( newCap-1 )= hash&( (16<<2) - 1)=10010,相当于多了10000,即 oldCap .如同下面的例子

​从上面计算发现,当cap为1的那位对应的hash为1的时候,resize前后的index是改变的。我们再看下面,使用上面的hash值,对应的就是 (e.hash & oldCap) != 0,恰好下标就是原索引+原容量

6.3、部分代码理解

​这一部分其实和put方法中,使用链地址法解决hash冲突的原理差不多,都是对链表的操作。


// 原位置
if ((e.hash & oldCap) == 0) {
    //loTail处为null,那么直接加到该位置
    if (loTail == null) 
        loHead = e;
    //loTail为链表尾结点,添加到尾部
    else
        loTail.next = e;
    //添加后,将loTail指向链表尾部,以便下次从尾部添加
    loTail = e;
}
// 原位置+旧容量
else {
    //hiTail处为null,就直接点添加到该位置
    if (hiTail == null)
        hiHead = e;
    //hiTail为链表尾结点,尾插法添加
    else
        hiTail.next = e;
    hiTail = e;
}

​我们直接通过一个简单的图来理解吧

6.4、resize总结

​resize代码稍微长了点,但是总结下来就是这几点

判断当前oldTab长度是否为空,如果为空,则进行初始化桶数组,也就回答了无参构造函数初始化为什么没有对容量和阈值进行赋值,如果不为空,则进行位运算,左移一位,2倍运算扩容。扩容,创建一个新容量的数组,遍历旧的数组:如果节点为空,直接赋值插入如果节点为红黑树,则需要进行进行拆分操作(个人对红黑树还没有理解,所以先不说明)如果为链表,根据hash算法进行重新计算下标,将链表进行拆分分组(相信看到这里基本上也知道链表拆分的大致过程了)

七、HashMap的get方法分析

7.1、get方法源码

​基本逻辑就是根据key算出hash值定位到哈希桶的索引,当可以就是当前索引的值则直接返回其对于的value,反之用key去遍历equal该索引下的key,直到找到位置。


public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    //计算存放在数组table中的位置.具体计算方法上面也已经介绍了
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        //先查找是不是就是数组中的元素
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        //该位置为红黑树根节点或者链表头结点
        if ((e = first.next) != null) {
            //如果first为红黑树结点,就在红黑树中遍历查找
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            //不是树结点,就在链表中遍历查找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

以上就是深入理解Java中的HashMap的详细内容,更多关于Java HashMap的资料请关注编程网其它相关文章!

--结束END--

本文标题: 深入理解Java中的HashMap

本文链接: https://lsjlt.com/news/128028.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 深入理解Java中的HashMap
    目录一、HashMap的结构图示二、HashMap的成员变量以及含义2.1、hash方法说明2.2、tableSizeFor方法说明三、HashMap的构造方法四、HashMap元素...
    99+
    2024-04-02
  • 深入浅析java 中HashMap的实现原理
    这篇文章将为大家详细讲解有关深入浅析java 中HashMap的实现原理,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。1. HashMap的数据结构数据结构中有数组和链表来实现对数据的存储,...
    99+
    2023-05-31
    java hashmap ava
  • 深入解析HashMap的put方法
    目录一.创建二.put()三.数组初始化四.扩容一.创建 这个相信大家也都知道怎么使用。今天就深入理解一下这里的底层原理。 首先HashMap在java中,创建出来是一个数组,然后...
    99+
    2024-04-02
  • 深入浅析HashMap的工作原理
    这篇文章给大家介绍深入浅析HashMap的工作原理,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。实际上,HashSet 和 HashMap 之间有很多相似之处,对于 HashSet 而言,系统采用 Hash 算法决定集...
    99+
    2023-05-31
    hashmap
  • Java HashMap工作原理该如何深入探讨
    本篇文章为大家展示了Java HashMap工作原理该如何深入探讨,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。大部分Java开发者都在使用Map,特别是HashMap。HashMap是一种简单但强...
    99+
    2023-06-17
  • 深入浅析Java中HashMap与HashTable容器的区别
    这篇文章给大家介绍深入浅析Java中HashMap与HashTable容器的区别,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。1、HashMap HashMap继承抽象类AbstractMap,实现接口Map、Clon...
    99+
    2023-05-31
    java hashmap hashtable
  • java String的深入理解
    java String的深入理解一、Java内存模型 按照官方的说法:Java 虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配。     JVM主要管理两种类型内存...
    99+
    2023-05-31
    java string ava
  • 深入理解Java中的java.lang.ArithmeticException异常
    引言 在Java中,异常处理是一种重要的编程机制。异常是指在程序执行过程中发生的错误或异常情况,它打破了正常的程序流程,需要进行相应的处理。Java提供了丰富的异常类和异常处理语法,使开发人员能够更好...
    99+
    2023-10-18
    java 开发语言
  • 深入理解java中Arrays.sort()的用法
    在Java中,Arrays.sort()方法是用来对数组进行排序的。它使用了经过优化的快速排序算法,可以对任何类型的数组进行排序。A...
    99+
    2023-08-14
    Java
  • 如何深入理解Java中的接口
    今天就跟大家聊聊有关如何深入理解Java中的接口,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。一、前言前面我们说了抽象类的概述,我们对抽象类也有个认识和理解了,现在我们学习十分重要的...
    99+
    2023-06-21
  • Java1.7全网最深入HashMap源码解析
    目录存储结构属性成员构造函数:hash方法Map中添加数据put方法流程图源码inflateTable方法putForNullKey方法addEntry方法createEntry方法...
    99+
    2024-04-02
  • Java 中HashMap 详解
    本篇重点: HashMap的存储结构 HashMap的put和get操作过程 HashMap的扩容 关于transient关键字 HashMap的存储结构 HashMap 总体是数组+链表的存储结构, 从JDK1.8开始,当数组的长度大...
    99+
    2023-09-03
    哈希算法 散列表 java
  • Java IO流深入理解
    目录阻塞(Block)和非阻塞(Non-Block)同步(Synchronization)和异步(Asynchronous)BIO与NIO对比面向流与面向缓冲阻塞与非阻塞选择器的问世...
    99+
    2024-04-02
  • 深入理解java中的异或运算符
    Java中的位运算符中有一个叫做异或的运算符,符号为(^)或者 Xor异或8个字总结 相同出0 不同出1int a=1; int b=1; System.out.println(a^b);这里则输出 0int a=12; int b=0; ...
    99+
    2016-04-08
    java入门 java 异或 运算符
  • Java中Class类的作用与深入理解
    Java中Class类的作用与深入理解  在程序运行期间,Java运行时系统始终为所有的对象维护一个被称为运行时的类型标识。这个信息跟踪着每个对象所属的类。JVM利用运行时信息选择相应的方法执行。而保存这些信息的类称为Class。...
    99+
    2023-05-31
    java class
  • Java数据结构之HashMap源码深入分析
    目录基本结构get方法put方法HashMap的容量为什么总是2的n次幂HashMap是Java集合框架中常用的一种数据结构,它是一种基于哈希表实现的映射表.在JDK1.8版本中,H...
    99+
    2023-05-17
    Java HashMap原理 Java HashMap Java HashMap源码
  • 深入解析Java中的Semaphore
    系列文章目录 文章目录 系列文章目录前言一、Semaphore的概念:二、Semaphore的用法:1.创建Semaphore对象:2.获取许可证:3.释放许可证: 三、Semaphor...
    99+
    2023-10-04
    java 开发语言 数据库
  • java中HashMap的原理分析
    这篇文章主要介绍java中HashMap的原理分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!Java的特点有哪些Java的特点有哪些1.Java语言作为静态面向对象编程语言的代表,实现了面向对象理论,允许程序员以...
    99+
    2023-06-14
  • Java异常处理深入理解
    目录图片解析:异常的处理:处理机制一:try-catch-finallyfinally的再说明:处理机制二:throws + 异常类型开发中应该如何选择两种处理方式?如何自定义异常类...
    99+
    2024-04-02
  • 深度解析HashMap:探秘Java中的键值存储魔法
    文章目录 一、 **前言**1.1 介绍HashMap在Java中的重要性1.2 引出本文将深入挖掘HashMap的内部机制 二、 **HashMap的基本概念**2.1 什么是HashMap?2.2 为什么HashMap在...
    99+
    2023-12-22
    java 源代码管理
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作