返回顶部
首页 > 资讯 > 后端开发 > Python >基于Tensorflow搭建一个神经网络的实现
  • 477
分享到

基于Tensorflow搭建一个神经网络的实现

2024-04-02 19:04:59 477人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

一、Tensorlow结构 import Tensorflow as tf import numpy as np #创建数据 x_data = np.random.rand(

一、Tensorlow结构


import Tensorflow as tf
import numpy as np
 
#创建数据
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1+0.3
 
#创建一个 tensorlow 结构
weights = tf.Variable(tf.random_unifORM([1], -1.0, 1.0))#一维,范围[-1,1]
biases = tf.Variable(tf.zeros([1]))
 
y = weights*x_data + biases
 
loss = tf.reduce_mean(tf.square(y - y_data))#均方差函数
 
#建立优化器,减少误差,提高参数准确度,每次迭代都会优化
optimizer = tf.train.GradientDescentOptimizer(0.5)#学习率为0.5(<1)
train = optimizer.minimize(loss)#最小化损失函数
 
#初始化不变量
init = tf.global_variables_initializer()
 
with tf.Session() as sess:
    sess.run(init)
    #train
    for step in range(201):
        sess.run(train)
        if step % 20 == 0:
            print(step, sess.run(weights), sess.run(biases))

二、session的使用


import tensorflow as tf
 
matrix1 = tf.constant([[3, 3]])
matrix2 = tf.constant([[2], [2]])
 
product = tf.matmul(matrix1, matrix2)
 
#method1
sess = tf.Session()
result2 = sess.run(product)
print(result2)
 
#method2
# with tf.Session() as sess:
#     result2 = sess.run(product)
#     print(result2)

三、Variable的使用


import tensorflow as tf
 
state = tf.Variable(0, name = 'counter')#变量初始化
# print(state.name)
one = tf.constant(1)
new_value = tf.add(state, one)
#将state用new_value代替
updata = tf.assign(state, new_value)
 
#变量激活
init = tf.global_variables_initializer()
 
with tf.Session() as sess:
    sess.run(init)
    for _ in range(3):
        sess.run(updata)
        print(sess.run(state))

四、placeholder的使用


#给定type,tf大部分只能处理float32数据
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
 
output = tf.multiply(input1, input2)
 
with tf.Session() as sess:
    print(sess.run(output, feed_dict={input1:[7.], input2:[2.]}))

五、激活函数 六、添加层


import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
def add_layer(inputs, in_size, out_size, activation_function = None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))#正态分布
    biases = tf.Variable(tf.zeros([1, out_size])+0.1) #1行,out_size列,初始值不推荐为0,所以加上0.1
    Wx_plus_b = tf.matmul(inputs, Weights) + biases #Weights*x+b的初始化值,也是未激活的值
 
    #激活
 
    if activation_function is None:
        #如果没有设置激活函数,,则直接把当前信号原封不动的传递出去
        outputs = Wx_plus_b
    else:
        #如果设置了激活函数,则由此激活函数对信号进行传递或抑制
        outputs = activation_function(Wx_plus_b)
    return outputs

七、创建一个神经网络


import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
def add_layer(inputs, in_size, out_size, activation_function = None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))#正态分布
    biases = tf.Variable(tf.zeros([1, out_size])+0.1) #1行,out_size列,初始值不推荐为0,所以加上0.1
    Wx_plus_b = tf.matmul(inputs, Weights) + biases #Weights*x+b的初始化值,也是未激活的值
 
    #激活
 
    if activation_function is None:
        #如果没有设置激活函数,,则直接把当前信号原封不动的传递出去
        outputs = Wx_plus_b
    else:
        #如果设置了激活函数,则由此激活函数对信号进行传递或抑制
        outputs = activation_function(Wx_plus_b)
    return outputs
 
"""定义数据形式"""
#创建一列(相当于只有一个属性值),(-1,1)之间,有300个单位,后面是维度,x_data是有300行
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]#np.linspace在指定间隔内返回均匀间隔数字
#加入噪声,均值为0,方差为0.05,形状和x_data一样
noise = np.random.normal(0, 0.05, x_data.shape)
#定义y的函数为二次曲线函数,同时增加一些噪声数据
y_data = np.square(x_data) - 0.5 + noise
 
#定义输入值,输入结构的输入行数不固定,但列就是1列的值
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
 
"""建立网络"""
#定义隐藏层,输入为xs,输入size为1列,因为x_data只有一个属性值,输出size假定有10个神经元的隐藏层,激活函数relu
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
#定义输出层,输出为l1输入size为10列,也就是l1的列数,输出size为1,这里的输出类似y_data,因此为1列
prediction = add_layer(l1, 10, 1,activation_function=None)
 
"""预测"""
#定义损失函数为差值平方和的平均值
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
 
"""训练"""
#进行逐步优化的梯度下降优化器,学习率为0.1,以最小化损失函数进行优化
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
#初始化模型所有参数
init = tf.global_variables_initializer()
 
#可视化
with tf.Session() as sess:
    sess.run(init)
 
    for i in range(1000):#学习1000次
        sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
        if i%50==0:
            print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
 

八、可视化


import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
def add_layer(inputs, in_size, out_size, activation_function = None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))#正态分布
    biases = tf.Variable(tf.zeros([1, out_size])+0.1) #1行,out_size列,初始值不推荐为0,所以加上0.1
    Wx_plus_b = tf.matmul(inputs, Weights) + biases #Weights*x+b的初始化值,也是未激活的值
 
    #激活
 
    if activation_function is None:
        #如果没有设置激活函数,,则直接把当前信号原封不动的传递出去
        outputs = Wx_plus_b
    else:
        #如果设置了激活函数,则由此激活函数对信号进行传递或抑制
        outputs = activation_function(Wx_plus_b)
    return outputs
 
"""定义数据形式"""
#创建一列(相当于只有一个属性值),(-1,1)之间,有300个单位,后面是维度,x_data是有300行
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]#np.linspace在指定间隔内返回均匀间隔数字
#加入噪声,均值为0,方差为0.05,形状和x_data一样
noise = np.random.normal(0, 0.05, x_data.shape)
#定义y的函数为二次曲线函数,同时增加一些噪声数据
y_data = np.square(x_data) - 0.5 + noise
 
#定义输入值,输入结构的输入行数不固定,但列就是1列的值
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
 
"""建立网络"""
#定义隐藏层,输入为xs,输入size为1列,因为x_data只有一个属性值,输出size假定有10个神经元的隐藏层,激活函数relu
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
#定义输出层,输出为l1输入size为10列,也就是l1的列数,输出size为1,这里的输出类似y_data,因此为1列
prediction = add_layer(l1, 10, 1,activation_function=None)
 
"""预测"""
#定义损失函数为差值平方和的平均值
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
 
"""训练"""
#进行逐步优化的梯度下降优化器,学习率为0.1,以最小化损失函数进行优化
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
#初始化模型所有参数
init = tf.global_variables_initializer()
 
#可视化
with tf.Session() as sess:
    sess.run(init)
 
    fig = plt.figure()#先生成一个图片框
    #连续性画图
    ax = fig.add_subplot(1, 1, 1)#编号为1,1,1
    ax.scatter(x_data, y_data)#画散点图
    #不暂停
    plt.ion()#打开互交模式
    # plt.show()
    #plt.show绘制一次就暂停了
    for i in range(1000):#学习1000次
        sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
        if i%50==0:
 
 
            try:
                #画出一条后,抹除掉,去除第一个线段,但是只有一个相当于抹除当前线段
                ax.lines.remove(lines[0])
            except Exception:
                pass
            prediction_value = sess.run(prediction, feed_dict={xs:x_data})
            lines = ax.plot(x_data,prediction_value,'r-',lw=5)#lw线宽
 
            #暂停
            plt.pause(0.5)

可视化结果:

动图效果如下所示:

到此这篇关于基于Tensorflow搭建一个神经网络的实现的文章就介绍到这了,更多相关Tensorflow搭建神经网络内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: 基于Tensorflow搭建一个神经网络的实现

本文链接: https://lsjlt.com/news/126070.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 基于Tensorflow搭建一个神经网络的实现
    一、Tensorlow结构 import tensorflow as tf import numpy as np #创建数据 x_data = np.random.rand(...
    99+
    2024-04-02
  • 基于Tensorflow如何搭建一个神经网络
    小编给大家分享一下基于Tensorflow如何搭建一个神经网络,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、Tensorlow结构import te...
    99+
    2023-06-15
  • 基于Python3 神经网络的实现
    本次学习是Denny Britz(作者)的Python2神经网络项目修改为基于Python3实现的神经网络(本篇博文代码完整)。重在理解原理和实现方法,部分翻译不够准确,可查看Python2版的原文。原文英文地址(基于Python2)安装P...
    99+
    2023-01-31
    神经网络
  • 如何用tensorflow搭建卷积神经网络
    要用TensorFlow搭建卷积神经网络(CNN),首先需要导入TensorFlow库并定义网络的结构。以下是一个简单的示例代码,展...
    99+
    2024-04-03
    tensorflow
  • Python基于TensorFlow接口实现深度学习神经网络回归
    目录1 写在前面2 代码分解介绍2.1 准备工作2.2 参数配置2.3 原有模型删除2.4 数据导入与数据划分2.5 Feature Columns定义2.6 模型优化方法构建与模型...
    99+
    2023-02-17
    Python TensorFlow深度学习神经网络回归 Python TensorFlow Python 神经网络回归
  • 单层的基础神经网络基于TensorFlow如何实现手写字识别
    本篇文章为大家展示了单层的基础神经网络基于TensorFlow如何实现手写字识别,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。先上代码import tensorflow &nbs...
    99+
    2023-06-17
  • 基于Pytorch的神经网络之Regression的实现
    目录1.引言2.神经网络搭建2.1准备工作2.2搭建网络2.3训练网络3.效果4.完整代码1.引言 我们之前已经介绍了神经网络的基本知识,神经网络的主要作用就是预测与分类,现在让我们...
    99+
    2024-04-02
  • 基于Pytorch的神经网络如何实现Regression
    这篇文章将为大家详细讲解有关基于Pytorch的神经网络如何实现Regression,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1.引言我们之前已经介绍了神经网络的基本知识,神经网络的主要作用就是预测与...
    99+
    2023-06-29
  • R语言基于Keras的MLP神经网络及环境搭建
    目录Intro环境搭建本机电脑配置安装TensorFlow以及Keras安装R以及Rstudio基于R语言的深度学习MLP在Rstudio中安装Tensorflow和KerasMNI...
    99+
    2024-04-02
  • 怎么用TensorFlow实现卷积神经网络
    这篇文章主要介绍“怎么用TensorFlow实现卷积神经网络”,在日常操作中,相信很多人在怎么用TensorFlow实现卷积神经网络问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用TensorFlow实现...
    99+
    2023-06-25
  • PyTorch实现卷积神经网络的搭建详解
    目录PyTorch中实现卷积的重要基础函数1、nn.Conv2d:2、nn.MaxPool2d(kernel_size=2)3、nn.ReLU()4、x.view()全部代码PyTo...
    99+
    2024-04-02
  • Python 实现一个全连接的神经网络
    目录前言梯度前向传播反向传播开始训练前言 在这篇文章中,准备用 Python 从头开始实现一个全连接的神经网络。你可能会问,为什么需要自己实现,有很多库和框架可以为我们做这件事,比如...
    99+
    2024-04-02
  • Python神经网络TensorFlow基于CNN卷积识别手写数字
    目录基础理论一、训练CNN卷积神经网络1、载入数据2、改变数据维度3、归一化4、独热编码5、搭建CNN卷积神经网络5-1、第一层:第一个卷积层5-2、第二层:第二个卷积层5-3、扁平...
    99+
    2024-04-02
  • pytorch 搭建神经网路的实现
    目录1 数据 (1)导入数据(2)数据集可视化(3)为自己制作的数据集创建类(4)数据集批处理(5)数据预处理2 神经网络(1)定义神经网络类(3)模型参数3 最优化模型参...
    99+
    2024-04-02
  • TensorFlow中的卷积神经网络是如何实现的
    在TensorFlow中,卷积神经网络(CNN)的实现通常涉及以下步骤: 定义输入数据:首先,需要定义CNN的输入数据,通常是一...
    99+
    2024-03-01
    TensorFlow
  • R语言基于Keras的MLP神经网络及环境怎么搭建
    这篇文章主要为大家分析了R语言基于Keras的MLP神经网络及环境怎么搭建的相关知识点,内容详细易懂,操作细节合理,具有一定参考价值。如果感兴趣的话,不妨跟着跟随小编一起来看看,下面跟着小编一起深入学习“R语言基于Keras的MLP神经网络...
    99+
    2023-06-26
  • python神经网络使用tensorflow实现自编码Autoencoder
    目录学习前言antoencoder简介1、为什么要降维2、antoencoder的原理3、python中encode的实现全部代码学习前言 当你发现数据的维度太多怎么办!没关系,我们...
    99+
    2024-04-02
  • TensorFlow卷积神经网络AlexNet实现示例详解
    2012年,Hinton的学生Alex Krizhevsky提出了深度卷积神经网络模型AlexNet,它可以算是LeNet的一种更深更宽的版本。AlexNet以显著的优势赢得了竞争激...
    99+
    2024-04-02
  • 基于Matlab如何实现人工神经网络回归
    这篇文章主要介绍了基于Matlab如何实现人工神经网络回归的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇基于Matlab如何实现人工神经网络回归文章都会有所收获,下面我们一起来看看吧。首先需要注明的是,在MAT...
    99+
    2023-07-05
  • Python实现一个简单三层神经网络的搭建及测试 代码解析
    目录1.初始化2.预测3.训练4.测试 废话不多说了,直接步入正题,一个完整的神经网络一般由三层构成:输入层,隐藏层(可以有多层)和输出层。本文所构建的神经网络隐藏层只有一层。一个神...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作