返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >R语言关于决策树知识点总结
  • 171
分享到

R语言关于决策树知识点总结

2024-04-02 19:04:59 171人浏览 泡泡鱼
摘要

决策树是以树的形式表示选择及其结果的图。图中的节点表示事件或选择,并且图的边缘表示决策规则或条件。它主要用于使用R的机器学习和数据挖掘应用程序。 决策树的使用的例子是 预测电子邮件是

决策树是以树的形式表示选择及其结果的图。图中的节点表示事件或选择,并且图的边缘表示决策规则或条件。它主要用于使用R的机器学习数据挖掘应用程序。

决策树的使用的例子是 预测电子邮件是垃圾邮件或非垃圾邮件,预测肿瘤癌变,或者基于这些因素预测贷款的信用风险。通常,使用观测数据(也称为训练数据)来创建模型。然后使用一组验证数据来验证和改进模型。 R具有用于创建和可视化决策树的包。对于新的预测变量集合,我们使用此模型来确定R包“party”用于创建决策树。

安装R语言包

在R语言控制台中使用以下命令安装软件包。您还必须安装相关软件包(如果有)。


install.packages("party")

“party”包具有用于创建和分析决策树的函数ctree()

语法

在R中创建决策树的基本语法是


ctree(fORMula, data)

以下是所使用的参数的描述 

  • formula是描述预测变量和响应变量的公式。
  • data是所使用的数据集的名称。

输入数据

我们将使用名为readingSkills的R内置数据集来创建决策树。 它描述了某人的readingSkills的分数,如果我们知道变量“年龄”,“shoesize”,“分数”,以及该人是否为母语者。

这里是示例数据。


# Load the party package. It will automatically load other dependent packages.
library(party)

# Print some records from data set readingSkills.
print(head(readingSkills))

当我们执行上面的代码,它产生以下结果及图表


  nativeSpeaker   age   shoeSize      score
1           yes     5   24.83189   32.29385
2           yes     6   25.95238   36.63105
3            no    11   30.42170   49.60593
4           yes     7   28.66450   40.28456
5           yes    11   31.88207   55.46085
6           yes    10   30.07843   52.83124
Loading required package: methods
Loading required package: grid
...............................
...............................

我们将使用ctree()函数创建决策树并查看其图形。


# Load the party package. It will automatically load other dependent packages.
library(party)

# Create the input data frame.
input.dat <- readingSkills[c(1:105),]

# Give the chart file a name.
png(file = "decision_tree.png")

# Create the tree.
  output.tree <- ctree(
  nativeSpeaker ~ age + shoeSize + score, 
  data = input.dat)

# Plot the tree.
plot(output.tree)

# Save the file.
dev.off()

当我们执行上面的代码,它产生以下结果


null device 
          1 
Loading required package: methods
Loading required package: grid
Loading required package: mvtnorm
Loading required package: modeltools
Loading required package: stats4
Loading required package: strucchange
Loading required package: zoo

Attaching package: ‘zoo'

The following objects are masked from ‘package:base':

    as.Date, as.Date.numeric

Loading required package: sandwich

决策树,使用R

结论

从上面显示的决策树,我们可以得出结论,其readingSkills分数低于38.3和年龄超过6的人不是一个母语者。

到此这篇关于R语言关于决策树知识点总结的文章就介绍到这了,更多相关R语言决策树内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: R语言关于决策树知识点总结

本文链接: https://lsjlt.com/news/125665.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • R语言关于决策树知识点总结
    决策树是以树的形式表示选择及其结果的图。图中的节点表示事件或选择,并且图的边缘表示决策规则或条件。它主要用于使用R的机器学习和数据挖掘应用程序。 决策树的使用的例子是 预测电子邮件是...
    99+
    2024-04-02
  • R语言关于“包”的知识点总结
    R语言的包是R函数,编译代码和样本数据的集合。 它们存储在R语言环境中名为“library”的目录下。 默认情况下,R语言在安装期间安装一组软件包。 随后添加更多包,当它们用于某些特...
    99+
    2024-04-02
  • R语言关于变量的知识点总结
    变量为我们提供了我们的程序可以操作的命名存储。 R语言中的变量可以存储原子向量,原子向量组或许多Robject的组合。 有效的变量名称由字母,数字和点或下划线字符组成。 变量名以字母...
    99+
    2024-04-02
  • R语言关于二项分布知识点总结
    二项分布模型处理在一系列实验中仅发现两个可能结果的事件的成功概率。 例如,掷硬币总是给出头或尾。 在二项分布期间估计在10次重复抛掷硬币中精确找到3个头的概率。 R语言有四个内置函数...
    99+
    2024-04-02
  • R语言关于多重回归知识点总结
    多元回归是线性回归到两个以上变量之间的关系的延伸。 在简单线性关系中,我们有一个预测变量和一个响应变量,但在多元回归中,我们有多个预测变量和一个响应变量。 多元回归的一般数学方程为 ...
    99+
    2024-04-02
  • R语言关于泊松回归知识点总结
    泊松回归(英语:Poisson regression)包括回归模型,其中响应变量是计数而不是分数的形式。  例如,足球比赛系列中的出生次数或胜利次数。 此外,响应变量的值遵...
    99+
    2024-04-02
  • R语言关于生存分析知识点总结
    生存分析处理预测特定事件将要发生的时间。 它也被称为故障时间分析或分析死亡时间。 例如,预测患有癌症的人将存活的天数或预测机械系统将失败的时间。 命名为survival的R语言包用于...
    99+
    2024-04-02
  • R语言常量知识点总结
    R语言基本的数据类型有数值型, 逻辑型(TRUE, FALSE),文本(字符串)。 支持缺失值,有专门的复数类型。 常量是指直接写在程序中的值。 数值型常量包括整型、单精度、双精度等...
    99+
    2024-04-02
  • R语言控制结构知识点总结
    if(condition) true_expression else false_expression if(condition) expression ...
    99+
    2024-04-02
  • R语言运算符知识点总结
    运算符是一个符号,通知编译器执行特定的数学或逻辑操作。 R语言具有丰富的内置运算符,并提供以下类型的运算符。 运算符的类型 R语言中拥有如下几种运算符类型: 算术运算符 关...
    99+
    2024-04-02
  • R语言表达式知识点总结
    R提供的组合表达式的结构: 分号 括号 花括号 分离型表达式 x = 1 y = 2 z = 3 x = 1; y = 2; z = 3 括号 括号会返回...
    99+
    2024-04-02
  • R语言数据重塑知识点总结
    R 语言中的数据重塑是关于改变数据被组织成行和列的方式。 大多数时间 R 语言中的数据处理是通过将输入数据作为数据帧来完成的。 很容易从数据帧的行和列中提取数据,但是在某些情况下,我...
    99+
    2024-04-02
  • R语言函数基础知识点总结
    函数是一组组合在一起以执行特定任务的语句。 R 语言具有大量内置函数,用户可以创建自己的函数。 在R语言中,函数是一个对象,因此R语言解释器能够将控制传递给函数,以及函数完...
    99+
    2024-04-02
  • R语言线性回归知识点总结
    回归分析是一种非常广泛使用的统计工具,用于建立两个变量之间的关系模型。 这些变量之一称为预测变量,其值通过实验收集。 另一个变量称为响应变量,其值从预测变量派生。 在线性回归中,这两...
    99+
    2024-04-02
  • R语言时间序列知识点总结
    时间序列对象:变量随着时间变化 时间序列的回归函数(例如ar或arima)通常以时间序列作为参数 许多绘图函数都有针对时间序列对象的特殊方法 ts函数创建时间序列对象 ts(da...
    99+
    2024-04-02
  • R语言数据类型知识点总结
    通常,在使用任何编程语言进行编程时,您需要使用各种变量来存储各种信息。 变量只是保留值的存储位置。 这意味着,当你创建一个变量,你必须在内存中保留一些空间来存储它们。 您可能想存储各...
    99+
    2024-04-02
  • R语言决策基础知识点详解
    决策结构要求程序员指定要由程序评估或测试的一个或多个条件,以及如果条件被确定为真则要执行的一个或多个语句,如果条件为假则执行其他语句。 以下是在大多数编程语言中的典型决策结构的一般形...
    99+
    2024-04-02
  • R语言中逻辑回归知识点总结
    逻辑回归是回归模型,其中响应变量(因变量)具有诸如True / False或0/1的分类值。 它实际上基于将其与预测变量相关的数学方程测量二元响应的概率作为响应变量的值。 逻辑回归的...
    99+
    2024-04-02
  • R语言中其它对象知识点总结
    其他对象 矩阵 二维向量 矩阵操作更类似于向量,而不是向量的向量或者向量列表 下标可以用用来引用元素,但并不反应矩阵的存储方式 矩阵没有一个确定的属性 数组 具有两个以上维度的向...
    99+
    2024-04-02
  • R语言属性知识点总结及实例
    属性(attribute):R中对象具备的特性 特性描述了所代表的内容以及R解释该对象的方式 很多时候两个对象之间的唯一差别在于它们的属性不同 常见的属性 ...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作