Python 官方文档:入门教程 => 点击学习
目录1 Program Counter ReGISter (程序计数寄存器)1.1. 定义1.2. 作用1.3. 特点2. Java虚拟机栈(JVM Stack)2.1. 定义2.2
全是干货的技术号:
本文已收录在【GitHub面试知识仓库】,欢迎 star/fork:
https://github.com/Wasabi1234/Java-Interview-Tutorial
内存是非常重要的系统资源,是硬盘和CPU的中间仓库及桥梁,承载着操作系统和应用程序的实时运行。
JVM内存布局规定了Java在运行过程中内存申请、分配、管理的策略,保证了JVM的高效稳定运行。不同的JVM对于内存的划分方式和管理机制存在着部分差异。结合JVM虚拟机规范,来探讨经典的JVM内存布局。
JVM运行时数据区
线程独占
每个线程都会有它独立的空间,随线程生命周期而创建和销毁
线程共享
所有线程能访问这块内存数据,随虚拟机或者GC而创建和销毁
jdk8的JVM内存模型
Register 之名源于CPU的寄存器,CPU只有把数据装载到寄存器才能够运行
寄存器存储指令相关的现场信息,由于CPU时间片轮限制,众多线程在并发执行过程中,任何一个确定的时刻,一个处理器或者多核处理器中的一个内核,只会执行某个线程中的一条指令。这样必然导致经常中断或恢复,如何保证分毫无差呢?
每个线程在创建后,都会产生自己的程序计数器和栈帧,程序计数器用来存放执行指令的偏移量和行号指示器等,线程执行或恢复都要依赖程序计数器。程序计数器在各个线程之间互不影响,此区域也不会发生内存溢出异常。
这是一块较小的内存空间,可看作当前线程正在执行的字节码的行号指示器。如果当前线程正在执行的是:
Java方法
计数器记录的就是当前线程正在执行的字节码指令的地址
本地方法
那么程序计数器值为undefined
程序计数器(后文简称为 PCR)有两个作用:
一块较小的内存空间,【线程私有】。每条线程都有一个独立的程序计数器。
唯一一个不会出现OOM的内存区域。
。相对于基于寄存器的运行环境,JVM是基于栈结构的运行环境。栈结构移植性更好,可控性更强。
JVM中的虚拟机栈是描述Java方法执行的内存区域,属【线程私有】。
栈中的元素用于支持虚拟机进行方法调用,每个方法从开始调用到执行完成的过程,就是栈帧从入栈到出栈的过程。
栈帧是方法运行的基本结构。
当前栈帧
当前方法
在执行引擎运行时,所有指令都只能针对当前栈帧操作,StackOverflowError
表示请求的栈溢出,导致内存耗尽,通常出现在递归方法。
当前方法的栈帧,都是正在战斗的战场,其中的操作栈是参与战斗的士兵
操作栈的压栈与出栈
虚拟机栈通过压/出栈,对每个方法对应的活动栈帧进行运算处理,方法正常执行结束,肯定会跳转到另一个栈帧上。
在执行的过程中,如果出现异常,会进行异常回溯,返回地址通过异常处理表确定。
栈帧在整个JVM体系中的地位颇高,包括:局部变量表、操作栈、动态连接、方法返回地址等。
存放方法参数和局部变量。
相对于类属性变量的准备阶段和初始化阶段,局部变量没有准备阶段,必须显式初始化。
如果是非静态方法,则在index[0]位置上存储的是方法所属对象的实例引用,随后存储的是参数和局部变量。
字节码指令中的STORE指令就是将操作栈中计算完成的局部变量写回局部变量表的存储空间内。
一个初始状态为空的桶式结构栈。由于 Java 没有寄存器,所有参数传递使用操作数栈。在方法执行过程中,会有各种指令往栈中写入和提取信息。JVM的执行引擎是基于栈的执行引擎,其中的栈指的就是操作栈。
字节码指令集的定义都是基于栈类型的,栈的深度在方法元信息的stack属性中。
详细的字节码操作顺序如下:
第1处说明:局部变量表就像个中药柜,里面有很多抽屉,依次编号为0, 1, 2,3,.,. n
字节码指令istore_ 1
就是打开1号抽屉,把栈顶中的数13存进去
栈是一个很深的竖桶,任何时候只能对桶口元素进行操作,所以数据只能在栈顶进行存取
某些指令可以直接在抽屉里进行,比如inc
指令,直接对抽屉里的数值进行+1操作
程序员面试过程中,常见的i++和++i的区别,可以从字节码上对比出来
iload_ 1
从局部变量表的第1号抽屉里取出一个数,压入栈顶,下一步直接在抽屉里实现+1的操作,而这个操作对栈顶元素的值没有影响i++并非原子操作。即使通过volatile关键字进行修饰,多个线程同时写的话,也会产生数据互相覆盖的问题。
每个栈帧中包含一个在常量池中对当前方法的引用,目的是支持方法调用过程的动态连接。
方法执行时有两种退出情况:
正常退出
正常执行到任何方法的返回字节码指令,如RETURN、IRETURN、ARETURN等。
异常退出
无论何种,都将返回至方法当前被调用的位置。方法退出的过程相当于弹出当前栈帧。
退出可能有三种方式:
Java虚拟机栈是描述Java方法运行过程的内存模型。Java虚拟机栈会为每一个即将运行的Java方法创建“栈帧”。用于存储该方法在运行过程中所需要的一些信息。
每一个方法从被调用到执行完成的过程,都对应着一个个栈帧在JVM栈中的入栈和出栈过程
注意:人们常说,Java的内存空间分为“栈”和“堆”,栈中存放局部变量,堆中存放对象。
这句话不完全正确!这里的“堆”可以这么理解,但这里的“栈”就是现在讲的虚拟机栈,或者说Java虚拟机栈中的局部变量表部分.
真正的Java虚拟机栈是由一个个栈帧组成,而每个栈帧中都拥有:局部变量表、操作数栈、动态链接、方法出口信息.
局部变量表的创建是在方法被执行的时候,随栈帧创建而创建。
表的大小在编译期就确定,在创建的时候只需分配事先规定好的大小即可。在方法运行过程中,表的大小不会改变。Java虚拟机栈会出现两种异常:
StackOverFlowError
若Java虚拟机栈的内存大小不允许动态扩展,那么当线程请求的栈深度大于虚拟机允许的最大深度时(但内存空间可能还有很多),就抛出此异常
栈内存默认最大是1M,超出则抛出StackOverflowError
OutOfMemoryError
若Java虚拟机栈的内存大小允许动态扩展,且当线程请求栈时内存用完了,无法再动态扩展了,此时抛出OutOfMemoryError异常
Java虚拟机栈也是线程私有的,每个线程都有各自的Java虚拟机栈,而且随着线程的创建而创建,随线程的死亡而死亡。
和虚拟机栈功能类似,虚拟机栈是为虚拟机执行JAVA方法而准备的
虚拟机规范没有规定具体的实现,由不同的虚拟机厂商去实现。
HotSpot虚拟机中虚拟机栈和本地方法栈的实现式一样的。同样,超出大小以后
也会拋出StackOverflowError.
本地方法栈和Java虚拟机栈实现的功能与抛出异常几乎相同
只不过虚拟机栈是为虚拟机执行Java方法(也就是字节码)服务,本地方法区则为虚拟机使用到的Native方法服务.
在JVM内存布局中,也是线程对象私有的,但是虚拟机栈“主内”,而本地方法栈“主外”
这个“内外”是针对JVM来说的,本地方法栈为Native方法服务
线程开始调用本地方法时,会进入一个不再受JVM约束的世界
本地方法可以通过JNI(Java Native Interface)来访问虚拟机运行时的数据区,甚至可以调用寄存器,具有和JVM相同的能力和权限
当大量本地方法出现时,势必会削弱JVM对系统的控制力,因为它的出错信息都比较黑盒.
对于内存不足的情况,本地方法栈还是会拋出native heap OutOfMemory
最著名的本地方法应该是System.currentTimeMillis()
,JNI 使Java深度使用OS的特性功能,复用非Java代码
但是在项目过程中,如果大量使用其他语言来实现JNI,就会丧失跨平台特性,威胁到程序运行的稳定性
假如需要与本地代码交互,就可以用中间标准框架进行解耦,这样即使本地方法崩溃也不至于影响到JVM的稳定
当然,如果要求极高的执行效率、偏底层的跨进程操作等,可以考虑设计为JNI调用方式
JVM启动时创建,存放对象的实例。垃圾回收器主要就是管理堆内存。
Heap是OOM故障最主要的发源地,它存储着几乎所有的实例对象,堆由垃圾收集器自动回收,堆区由各子线程共享使用
通常情况下,它占用的空间是所有内存区域中最大的,但如果无节制地创建大量对象,也容易消耗完所有的空间
堆的内存空间既可以固定大小,也可运行时动态地调整,通过如下参数设定初始值和最大值,比如
-Xms256M. -Xmx1024M
其中-X表示它是JVM运行参数
但是在通常情况下,服务器在运行过程中,堆空间不断地扩容与回缩,势必形成不必要的系统压力,所以在线上生产环境中,JVM的Xms和Xmx设置成一样大小,避免在GC后调整堆大小时带来的额外压力
堆分成两大块:新生代和老年代
对象产生之初在新生代,步入暮年时进入老年代,但是老年代也接纳在新生代无法容纳的超大对象
新生代= 1个Eden区+ 2个Survivor区
绝大部分对象在Eden区生成,当Eden区装填满的时候,会触发Young GC。垃圾回收的时候,在Eden区实现清除策略,没有被引用的对象则直接回收。依然存活的对象会被移送到Survivor区,这个区真是名副其实的存在
Survivor 区分为S0和S1两块内存空间,送到哪块空间呢?每次Young GC的时候,将存活的对象复制到未使用的那块空间,然后将当前正在使用的空间完全清除,交换两块空间的使用状态
如果YGC要移送的对象大于Survivor区容量上限,则直接移交给老年代
假如一些没有进取心的对象以为可以一直在新生代的Survivor区交换来交换去,那就错了。每个对象都有一个计数器,每次YGC都会加1。
-XX:MaxTenuringThreshold
参数能配置计数器的值到达某个阈值的时候,对象从新生代晋升至老年代。如果该参数配置为1,那么从新生代的Eden区直接移至老年代。默认值是15,可以在Survivor 区交换14次之后,晋升至老年代
若Survivor
区无法放下,或者超大对象的阈值超过上限,则尝试在老年代中进行分配;
如果老年代也无法放下,则会触发Full Garbage Collection(Full GC);
如果依然无法放下,则抛OOM.
堆出现OOM的概率是所有内存耗尽异常中最高的
出错时的堆内信息对解决问题非常有帮助,所以给JVM设置运行参数-
XX:+HeapDumpOnOutOfMemoryError
让JVM遇到OOM异常时能输出堆内信息
在不同的JVM实现及不同的回收机制中,堆内存的划分方式是不一样的
存放所有的类实例及数组对象
除了实例数据,还保存了对象的其他信息,如Mark Word(存储对象哈希码,GC标志,GC年龄,同步锁等信息),Klass Pointy(指向存储类型元数据的指针)及一些字节对齐补白的填充数据(若实例数据刚好满足8字节对齐,则可不存在补白)
Java虚拟机所需要管理的内存中最大的一块.
堆内存物理上不一定要连续,只需要逻辑上连续即可,就像磁盘空间一样.
堆是垃圾回收的主要区域,所以也被称为GC堆.
堆的大小既可以固定也可以扩展,但主流的虚拟机堆的大小是可扩展的(通过-Xmx和-Xms控制),因此当线程请求分配内存,但堆已满,且内存已满无法再扩展时,就抛出OutOfMemoryError.
线程共享
整个Java虚拟机只有一个堆,所有的线程都访问同一个堆.
它是被所有线程共享的一块内存区域,在虚拟机启动时创建.
而程序计数器、Java虚拟机栈、本地方法栈都是一个线程对应一个
Java虚拟机规范中定义方法区是堆的一个逻辑区划部分,具体实现根据不同虚拟机来实现,如: HotSpot在Java7中方法区放在永久代,Java8放在元数据空间,并且通过GC机制对这个区域进行管理。
别名Non-Heap(非堆),以与Java堆区分。方法区中存放已经被虚拟机加载的:
线程共享
方法区是堆的一个逻辑部分,因此和堆一样,都是线程共享的.整个虚拟机中只有一个方法区.
永久代
方法区中的信息一般需要长期存在,而且它又是堆的逻辑分区,因此用堆的划分方法,我们把方法区称为永久代.
内存回收效率低
Java虚拟机规范对方法区的要求比较宽松,可以不实现垃圾收集.
方法区中的信息一般需要长期存在,回收一遍内存之后可能只有少量信息无效.
对方法区的内存回收的主要目标是:对常量池的回收和对类型的卸载
和堆一样,允许固定大小,也允许可扩展的大小,还允许不实现垃圾回收。
当方法区内存空间无法满足内存分配需求时,将抛出OutOfMemoryError异常.
方法区的一部分。
.java
文件被编译之后生成的.class
文件中除了包含:类的版本、字段、方法、接口等描述信息外,还有一项就是常量池。
常量池中存放编译时期产生的各种字面量和符号引用,.class
文件中的常量池中的所有的内容在类被加载后存放到方法区的运行时常量池中。
// age 是一个变量,可被赋值
// 21 是一个字面值常量,不能被赋值
PS:int age = 21;
// pai 是一个符号常量,一旦被赋值之后就不能被修改
int final pai = 3.14;
JDK6、7、8三个版本中, 运行时常量池的所处区域一直在不断的变化:
这也说明了官方对“永久代”的优化从7就已经开始了。
运行时常量池相对于class文件常量池的另外一个特性是具备动态性,Java语言并不要求常量一定只有编译器才产生,也就是并非预置入class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中。
String类的intern()方法就是采用了运行时常量池的动态性。当调用 intern 方法时,看池中已包含一个等于此 String 对象的字符串:
是
则返回池中的字符串
否
将此 String 对象添加到池中,并返回此 String 对象的引用
运行时常量池是方法区的一部分,所以会受到方法区内存的限制,因此当常量池无法再申请到内存时就会抛出OutOfMemoryError异常.
我们一般在一个类中通过public static final来声明一个常量。这个类被编译后便生成Class文件,这个类的所有信息都存储在这个class文件中。
当这个类被Java虚拟机加载后,class文件中的常量就存放在方法区的运行时常量池中。而且在运行期间,可以向常量池中添加新的常量。如:String类的intern()方法就能在运行期间向常量池中添加字符串常量。
当运行时常量池中的某些常量没有被对象引用,同时也没有被变量引用,那么就需要垃圾收集器回收。
直接内存不是虚拟机运行时数据区的一部分,也不是JVM规范中定义的内存区域,但在JVM的实际运行过程中会频繁地使用这块区域.而且也会抛OOM
在JDK 1.4中加入了NIO(New Input/Output)类,引入了一种基于管道和缓冲区的IO方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在堆里的DirectByteBuffer
对象作为这块内存的引用来操作堆外内存中的数据.
这样能在一些场景中显著提升性能,因为避免了在Java堆和Native堆中来回复制数据.
综上看来
程序计数器、Java虚拟机栈、本地方法栈是线程私有的,即每个线程都拥有各自的程序计数器、Java虚拟机栈、本地方法区。并且他们的生命周期和所属的线程一样。
而堆、方法区是线程共享的,在Java虚拟机中只有一个堆、一个方法栈。并在JVM启动的时候就创建,JVM停止才销毁。
到了JDK8,元空间的前身Perm区(永久代)被淘汰,在JDK7及之前的版本中,只有Hotspot才有Perm区,它在启动时固定大小,很难进行调优,并且Full GC时会移动类元信息。
在某些场景下,若动态加载类过多,容易产生Perm区的OOM。比如某工程因为功能点较多,运行过程中,要不断动态加载很多类,经常出现错误:
Exception in thread ‘dubbo client x.x connector'
java.lang.OutOfMemoryError: PermGenspac
为解决该问题,需要设定运行参数
-XX:MaxPermSize= l280m
如果部署到新机器上,往往会因为JVM参数没有修改导致故障再现。不熟悉此应用的人排查问题时都苦不堪言。此外,永久代在GC过程中还存在诸多问题。
所以,JDK8使用元空间替换永久代。区别于永久代,元空间在本地内存中分配。即,
只要本地内存足够,它不会出现类似永久代的java.lang.OutOfMemoryError: PermGen space
对永久代的设置参数 PermSize
和MaxPermSize
也会失效。在JDK8及以上版本,设定MaxPermSize
参数,JVM在启动时并不会报错,但会提示:
Java HotSpot 64Bit Server VM warning:ignoring option MaxPermSize=2560m; support was removed in 8.0
默认情况下,“元空间”的大小可以动态调整,或者使用新参数MaxMetaspaceSize
来限制本地内存分配给类元数据的大小。
在JDK8里,Perm 区所有内容中
比如上图中的Object类元信息、静态属性System.out、整型常量000000等
图中显示在常量池中的String,其实际对象是被保存在堆内存中的。
GC
元空间内存分配模型
块的大小取决于类加载器的类型
Java反射的字节码存取器(sun.reflect.DelegatingClassLoader )占用内存更小
最后,从线程共享的角度来看
从这个角度看一下Java内存结构
堆和方法区都是线程共享的区域,主要用来存放对象的相关信息。一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个分支需要的内存也可能不一样,我们只有在程序运行期间才能知道会创建哪些对象,因此, 这部分的内存和回收都是动态的,垃圾收集器所关注的就是这部分内存(本节后续所说的“内存”分配与回收也仅指这部分内存)。而在JDK1.7和1.8对这部分内存的分配也有所不同:
Java8中堆内存分配如下图:
在某些情况下,我们需要在JVM关闭时做一些扫尾的工作,比如删除临时文件、停止日志服务。为此JVM提供了关闭钩子(shutdown hocks)来做这些事件。
Runtime类封装java应用运行时的环境,每个java应用程序都有一个Runtime类实例,使用程序能与其运行环境相连。
关闭钩子本质上是一个线程(也称为hock线程),可以通过Runtime的addshutdownhock (Thread hock)向主jvm注册一个关闭钩子。hock线程在jvm正常关闭时执行,强制关闭不执行。
对于在jvm中注册的多个关闭钩子,他们会并发执行,jvm并不能保证他们的执行顺序。
参考
《码出高效》
到此这篇关于华为技术专家讲解JVM内存模型(收藏)的文章就介绍到这了,更多相关JVM内存模型内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
--结束END--
本文标题: 华为技术专家讲解JVM内存模型(收藏)
本文链接: https://lsjlt.com/news/125208.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0