返回顶部
首页 > 资讯 > 后端开发 > Python >Python基于Opencv识别两张相似图片
  • 882
分享到

Python基于Opencv识别两张相似图片

2024-04-02 19:04:59 882人浏览 泡泡鱼

Python 官方文档:入门教程 => 点击学习

摘要

目录相关背景 直方图计算法 图像指纹与汉明距离 平均哈希法(aHash) 感知哈希算法(pHash) dHash算法 在网上看到python做图像识别的相关文章后,真心感觉Pytho

在网上看到python做图像识别的相关文章后,真心感觉Python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系。 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向。 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用OpenCV库进行了更简洁化的实现。

相关背景

要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照。风景照中,是沙漠还是海洋,人物照中,两个人是不是都是国字脸,还是瓜子脸(还是倒瓜子脸……哈哈……)。

那么从机器的角度来说也是这样的,先识别图像的特征,然后再相比。

很显然,在没有经过训练的计算机(即建立模型),那么计算机很难区分什么是海洋,什么是沙漠。但是计算机很容易识别到图像的像素值。

因此,在图像识别中,颜色特征是最为常用的。(其余常用的特征还有纹理特征、形状特征和空间关系特征等)

其中又分为

直方图 颜色集 颜色矩 聚合向量 相关图

直方图计算法

这里先用直方图进行简单讲述。

先借用一下恋花蝶的图片,

[图片上传失败...(image-6ca66e-1617780875489)]

从肉眼来看,这两张图片大概也有八成是相似的了。 在Python中利用opencv中的calcHist()方法获取其直方图数据,返回的结果是一个列表,使用matplotlib,画出了这两张图的直方图数据图 如下:

是的,我们可以明显的发现,两张图片的直方图还是比较重合的。所以利用直方图判断两张图片的是否相似的方法就是,计算其直方图的重合程度即可。 计算方法如下:

其中gi和si是分别指两条曲线的第i个点。

最后计算得出的结果就是就是其相似程度。

不过,这种方法有一个明显的弱点,就是他是按照颜色的全局分布来看的,无法描述颜色的局部分布和色彩所处的位置。

也就是假如一张图片以蓝色为主,内容是一片蓝天,而另外一张图片也是蓝色为主,但是内容却是妹子穿了蓝色裙子,那么这个算法也很可能认为这两张图片的相似的。

缓解这个弱点有一个方法就是利用Image的crop方法把图片等分,然后再分别计算其相似度,最后综合考虑。

图像指纹与汉明距离

在介绍下面其他判别相似度的方法前,先补充一些概念。第一个就是图像指纹

图像指纹和人的指纹一样,是身份的象征,而图像指纹简单点来讲,就是将图像按照一定的哈希算法,经过运算后得出的一组二进制数字。

说到这里,就可以顺带引出汉明距离的概念了。

假如一组二进制数据为101,另外一组为111,那么显然把第一组的第二位数据0改成1就可以变成第二组数据111,所以两组数据的汉明距离就为1

简单点说,汉明距离就是一组二进制数据变成另一组数据所需的步骤数,显然,这个数值可以衡量两张图片的差异,汉明距离越小,则代表相似度越高。汉明距离为0,即代表两张图片完全一样。

如何计算得到汉明距离,请看下面三种哈希算法

平均哈希法(aHash)

此算法是基于比较灰度图每个像素与平均值来实现的

一般步骤:

1.缩放图片,一般大小为8*8,64个像素值。
2.转化为灰度图
3.计算平均值:计算进行灰度处理后图片的所有像素点的平均值,直接用numpy中的mean()计算即可。
4.比较像素灰度值:遍历灰度图片每一个像素,如果大于平均值记录为1,否则为0.
5.得到信息指纹:组合64个bit位,顺序随意保持一致性。
最后比对两张图片的指纹,获得汉明距离即可。

感知哈希算法(pHash)

平均哈希算法过于严格,不够精确,更适合搜索缩略图,为了获得更精确的结果可以选择感知哈希算法,它采用的是DCT(离散余弦变换)来降低频率的方法

一般步骤:

  1. 缩小图片:32 * 32是一个较好的大小,这样方便DCT计算
  2. 转化为灰度图
  3. 计算DCT:利用Opencv中提供的dct()方法,注意输入的图像必须是32位浮点型,所以先利用numpy中的float32进行转换
  4. 缩小DCT:DCT计算后的矩阵是32 * 32,保留左上角的8 * 8,这些代表的图片的最低频率
  5. 计算平均值:计算缩小DCT后的所有像素点的平均值。
  6. 进一步减小DCT:大于平均值记录为1,反之记录为0.
  7. 得到信息指纹:组合64个信息位,顺序随意保持一致性。

最后比对两张图片的指纹,获得汉明距离即可。

dHash算法

相比pHash,dHash的速度要快的多,相比aHash,dHash在效率几乎相同的情况下的效果要更好,它是基于渐变实现的。

步骤:

  • 缩小图片:收缩到9*8的大小,以便它有72的像素点
  • 转化为灰度图
  • 计算差异值:dHash算法工作在相邻像素之间,这样每行9个像素之间产生了8个不同的差异,一共8行,则产生了64个差异值
  • 获得指纹:如果左边的像素比右边的更亮,则记录为1,否则为0.
  • 最后比对两张图片的指纹,获得汉明距离即可

整个的代码实现如下:


# -*- coding: utf-8 -*- 
# 利用python实现多种方法来实现图像识别 
 
import cv2 
import numpy as np 
from matplotlib import pyplot as plt 
 
# 最简单的以灰度直方图作为相似比较的实现 
def classify_gray_hist(image1,image2,size = (256,256)): 
 # 先计算直方图 
 # 几个参数必须用方括号括起来 
 # 这里直接用灰度图计算直方图,所以是使用第一个通道, 
 # 也可以进行通道分离后,得到多个通道的直方图 
 # bins 取为16 
 image1 = cv2.resize(image1,size) 
 image2 = cv2.resize(image2,size) 
 hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0]) 
 hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0]) 
 # 可以比较下直方图 
 plt.plot(range(256),hist1,'r') 
 plt.plot(range(256),hist2,'b') 
 plt.show() 
 # 计算直方图的重合度 
 degree = 0 
 for i in range(len(hist1)): 
 if hist1[i] != hist2[i]: 
 degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i])) 
 else: 
 degree = degree + 1 
 degree = degree/len(hist1) 
 return degree 
 
# 计算单通道的直方图的相似值 
def calculate(image1,image2): 
 hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0]) 
 hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0]) 
 # 计算直方图的重合度 
 degree = 0 
 for i in range(len(hist1)): 
 if hist1[i] != hist2[i]: 
 degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i])) 
 else: 
 degree = degree + 1 
 degree = degree/len(hist1) 
 return degree 
 
# 通过得到每个通道的直方图来计算相似度 
def classify_hist_with_split(image1,image2,size = (256,256)): 
 # 将图像resize后,分离为三个通道,再计算每个通道的相似值 
 image1 = cv2.resize(image1,size) 
 image2 = cv2.resize(image2,size) 
 sub_image1 = cv2.split(image1) 
 sub_image2 = cv2.split(image2) 
 sub_data = 0 
 for im1,im2 in zip(sub_image1,sub_image2): 
 sub_data += calculate(im1,im2) 
 sub_data = sub_data/3 
 return sub_data 
 
# 平均哈希算法计算 
def classify_aHash(image1,image2): 
 image1 = cv2.resize(image1,(8,8)) 
 image2 = cv2.resize(image2,(8,8)) 
 gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY) 
 gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY) 
 hash1 = getHash(gray1) 
 hash2 = getHash(gray2) 
 return Hamming_distance(hash1,hash2) 
 
def classify_pHash(image1,image2): 
 image1 = cv2.resize(image1,(32,32)) 
 image2 = cv2.resize(image2,(32,32)) 
 gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY) 
 gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY) 
 # 将灰度图转为浮点型,再进行dct变换 
 dct1 = cv2.dct(np.float32(gray1)) 
 dct2 = cv2.dct(np.float32(gray2)) 
 # 取左上角的8*8,这些代表图片的最低频率 
 # 这个操作等价于c++中利用opencv实现的掩码操作 
 # 在python中进行掩码操作,可以直接这样取出图像矩阵的某一部分 
 dct1_roi = dct1[0:8,0:8] 
 dct2_roi = dct2[0:8,0:8] 
 hash1 = getHash(dct1_roi) 
 hash2 = getHash(dct2_roi) 
 return Hamming_distance(hash1,hash2) 
 
# 输入灰度图,返回hash 
def getHash(image): 
 avreage = np.mean(image) 
 hash = [] 
 for i in range(image.shape[0]): 
 for j in range(image.shape[1]): 
 if image[i,j] > avreage: 
 hash.append(1) 
 else: 
 hash.append(0) 
 return hash 
 
 
# 计算汉明距离 
def Hamming_distance(hash1,hash2): 
 num = 0 
 for index in range(len(hash1)): 
 if hash1[index] != hash2[index]: 
 num += 1 
 return num 
 
 
if __name__ == '__main__': 
 img1 = cv2.imread('10.jpg') 
 cv2.imshow('img1',img1) 
 img2 = cv2.imread('11.jpg') 
 cv2.imshow('img2',img2) 
 degree = classify_gray_hist(img1,img2) 
 #degree = classify_hist_with_split(img1,img2) 
 #degree = classify_aHash(img1,img2) 
 #degree = classify_pHash(img1,img2) 
 print degree 
 cv2.waiTKEy(0) 

以上就是Python基于Opencv识别两张相似图片的详细内容,更多关于python识别相似图片的资料请关注编程网其它相关文章!

--结束END--

本文标题: Python基于Opencv识别两张相似图片

本文链接: https://lsjlt.com/news/124537.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Python基于Opencv识别两张相似图片
    目录相关背景 直方图计算法 图像指纹与汉明距离 平均哈希法(aHash) 感知哈希算法(pHash) dHash算法 在网上看到python做图像识别的相关文章后,真心感觉pytho...
    99+
    2024-04-02
  • Python+Opencv识别两张相似图片
    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系。 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句...
    99+
    2022-06-04
    两张 图片 Python
  • 怎么在Python中使用Opencv识别相似的图片
    这篇文章给大家介绍怎么在Python中使用Opencv识别相似的图片,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。python主要应用领域有哪些1、云计算,典型应用OpenStack。2、WEB前端开发,众多大型网站均...
    99+
    2023-06-14
  • python实现识别相似图片小结
    文章简介 在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系。 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在...
    99+
    2022-06-04
    小结 图片 python
  • 利用python进行识别相似图片(二)
    前言 和网上各种首先你要有一个女朋友的系列一样,想进行人脸判断,首先要有脸,只要能靠确定人脸的位置,那么进行两张人脸是否相似的操作便迎刃而解了。 所以本篇文章着重讲述如何利用openCV定位人脸。 上一篇文章的地址: 利用python进行...
    99+
    2023-01-31
    图片 python
  • python基于OpenCV模板匹配识别图片中的数字
    目录前言程序目标思路讲解代码讲解完整代码总结前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出“读取失败”。...
    99+
    2024-04-02
  • python如何基于OpenCV模板匹配识别图片中的数字
    小编给大家分享一下python如何基于OpenCV模板匹配识别图片中的数字,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!程序目标单个数字模板:(这些单个模板是我自...
    99+
    2023-06-14
  • python OpenCV计算图片相似度的5种算法
    目录5种算法参考文章:原始两张图片: 代码运行结果如下。 5种算法 值哈希算法、差值哈希算法和感知哈希算法都是值越小,相似度越高,取值为0-64,即汉明距离中,64位的hash值...
    99+
    2024-04-02
  • 如何利用opencv判断两张图片是否相同详解
    OpenCV介绍 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——...
    99+
    2024-04-02
  • OpenCV-Python 实现两张图片自动拼接成全景图
    目录背景介绍基本原理具体实现寻找相似点图片拼接Reference背景介绍 图片的全景拼接如今已不再稀奇,现在的智能摄像机和手机摄像头基本都带有图片自动全景拼接的功能,但是一般都会要求...
    99+
    2024-04-02
  • 基于Python编写一个图片识别系统
    目录项目介绍环境准备程序原理实现脚本测试效果总结项目介绍 本项目将使用python3去识别图片是否为色情图片,会使用到PIL这个图像处理库,并且编写算法来划分图像的皮肤区域 介绍一下...
    99+
    2024-04-02
  • OpenCV-Python怎么实现两张图片自动拼接成全景图
    这篇文章给大家分享的是有关OpenCV-Python怎么实现两张图片自动拼接成全景图的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。背景介绍图片的全景拼接如今已不再稀奇,现在的智能摄像机和手机摄像头基本都带有图片自...
    99+
    2023-06-15
  • 基于Opencv图像识别实现答题卡识别示例详解
    目录1. 项目分析2.项目实验3.项目结果总结在观看唐宇迪老师图像处理的课程中,其中有一个答题卡识别的小项目,在此结合自己理解做一个简单的总结。 1. 项目分析 首先在拿到项目时候,...
    99+
    2024-04-02
  • 基于opencv+java实现简单图形识别程序
    目录前言方法如下总结前言 OpenCV的 全称是:Open Source Computer Vision Library。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视...
    99+
    2024-04-02
  • 【Android App】人脸识别中使用Opencv比较两张人脸相似程度实战(附源码和演示 超详细)
    需要全部代码请点赞关注收藏后评论区留言私信~~~ 一、比较两张人脸的相似程度 直方图由一排纵向的竖条或者竖线组成,横轴代表数据类型,纵轴代表数据多少。 图像直方图经常应用于特征提取、图像匹配等方面。  假设有两幅图像,它们的直方图很...
    99+
    2023-08-31
    opencv 人工智能 计算机视觉 android studio java
  • 基于Java实现图片相似度对比的示例代码
    目录前言依赖基本算法相关代码前言 很多时候我们需要将两个图片进行对比,确定两个图片的相似度。一般常用的就是openCv库,这里就是使用openCv进行图片相似度对比。 依赖 <...
    99+
    2024-04-02
  • Python+OpenCV实现基于颜色的目标识别
    目录任务主要代码效果展示学习了一点opencv的知识于是找了个小项目来实践一下。这里先说明一下,我的实现方法不见得是最好的(因为这只是一个用于练习的项目)仅作参考,也欢迎各位大佬指正...
    99+
    2024-04-02
  • Python中基于Opencv怎么实现人脸识别
    这篇文章主要讲解了“Python中基于Opencv怎么实现人脸识别”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python中基于Opencv怎么实现人脸识别”吧!检测人脸。这应该是最基本的...
    99+
    2023-06-02
  • Python基于百度API识别并提取图片中文字
    利用百度 AI 开发平台的 OCR 文字识别 API 识别并提取图片中的文字。首先需注册获取 API 调用的 ID 和 key,步骤如下: 打开百度AI开放平台,进入控制台中的文字识...
    99+
    2024-04-02
  • Python+OpenCV如何实现基于颜色的目标识别
    这篇文章给大家介绍Python+OpenCV如何实现基于颜色的目标识别,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。任务让摄像头识别到视野范围内的气球并返回每个气球的中心点坐标。因为场地固定,背景单一,所以省下来很多操...
    99+
    2023-06-22
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作