返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >R语言差异检验:非参数检验操作
  • 749
分享到

R语言差异检验:非参数检验操作

2024-04-02 19:04:59 749人浏览 八月长安
摘要

非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态进行推断的方法。它利用数据的大小间的次序关系(秩Rank),而不是具体数值信息,得出推断结论。 它是参数检验所

非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态进行推断的方法。它利用数据的大小间的次序关系(秩Rank),而不是具体数值信息,得出推断结论。

它是参数检验所需要的某些条件不满足时所使用的方法。

和参数检验相比,非参数检验的优势如下:

稳健性。对总体分布的条件要求放宽

对数据类型要求不严格,适用有序分类变量

适用范围广

劣势:

没有利用实际数值,损失了部分信息,检验的有效性较差。

非参数性检验的方法非常多,基于方法的检验功效性角度,本文只涉及

双独立样本:Mann-Whitney U检验

双配对样本:Wilcoxon配对秩和检验

多独立样本:Kruskal-Wallis检验

多配对样本:Friedman检验

Mann-Whitney U检验

曼-惠特尼U检验(曼-惠特尼秩和检验),是由H.B.Mann和D.R.Whitney于1947年提出的。它假设两个样本分别来自除了总体均值以外完全相同的两个总体,目的是检验这两个总体的均值是否有显著的差别。

适用条件

双独立样本检验

R语言示例

函数及格式:wilcox.test(y~x,data)

其中,y是连续变量,x是一个二分变量。

也可以使用这种形式:


wilcox.test(y1,y2)

其中,y1和y2为变量名。可选参数data的取值为一个包含这些变量的矩阵或数据框。

示例:


#载入MASS包
library(MASS)
#使用UScrime数据集
#Prob为监禁率,So为是否南方地区
#检验美国监禁率是否存在南方和非南方差异
#wilcox.test检验
wilcox.test(Prob~So,data = UScrime)
#结果
 Wilcoxon rank sum test

data:  Prob by So
W = 81, p-value = 8.488e-05
alternative hypothesis: true location shift is not equal to 0
#结果显示P小于0.001,美国监禁率存在南方和非南方地区差异。

Wilcoxon配对秩和检验

Wilcoxon配对秩和检验是对Sign符号检验的改进。它的假设被归结为总体中位数是否为0。

适用条件

双配对样本检验

R语言示例

Wilcoxon配对秩和检验调用函数格式与Mann-Whitney U检验相同。不同之处在于可以添加paired=TRUE参数。

示例:


#u1(14-24岁年龄段城市男性失业率)
#u2(35-39岁年龄段城市男性失业率)
#检验失业率是否在两个年龄段存在差异
#Wilcoxon配对秩和检验
with(UScrime,wilcox.test(U1,U2,paired = TRUE))
#结果
 Wilcoxon signed rank test with continuity correction

data:  U1 and U2
V = 1128, p-value = 2.464e-09
alternative hypothesis: true location shift is not equal to 0
#结果显示,存在差别。

Kruskal-Wallis检验

由克罗斯考尔和瓦里斯1952年提出,用来解决多独立样本难以满足方差分析条件(独立性、正态性、方差齐性)时统计推断问题。

适用条件

多独立样本检验

R语言示例

函数格式:

kruskal.test(y~A,data)

其中,y为连续变量,A为两个或更多水平的分组变量。

示例:


#检验美国四个地区文盲率是否存在差异
#数据皆来自R自带数据集
#通过state.region数据集获取地区名称,即分组变量。
states <- data.frame(state.region,state.x77)
#调用kruskal.test函数
kruskal.test(Illiteracy~state.region,data = states)
#结果
 Kruskal-Wallis rank sum test

data:  Illiteracy by state.region
Kruskal-Wallis chi-squared = 22.672, df = 3, p-value =
4.726e-05
#结果显示,文盲率存在地区差异。

Friedman检验

Friedman检验也称弗里德曼双向评秩方差分析。由Friedman在1937年提出,基本思想是独立对每一个区组分别对数据进行排秩,消除区组间的差异以检验各种处理之间是否存在差异。

适用条件

多配对样本检验

Fiedman检验在样本量有限的情况下,实际应用价值不大。

R语言示例

函数格式:


friedman.test(y~A|B,data)

其中,y为连续变量,A是一个分组变量,B是一个用以认定匹配观测的区组变量。

或者


friedman.test(data=matrix格式)

其中,data要求矩阵格式。可以通过as.matrix转换

示例:

(虚构)有30名女性分为三组每组10人,试吃三种药。经过一段时间后,药效如下。问三种药药效是否有区别。

药1

4.4,5,5.8,4.6,4.9,4.8,6,5.9,4.3,5.1

药2

6.2,5.2,5.5,5,4.4,5.4,5,6.4,5.8,6.2

药3

7.0,6.2,5.9,6,4.6,6.4,5,6.4,5.8,6.2


#生成数据集
drug1 <- c(4.4,5,5.8,4.6,4.9,4.8,6,5.9,4.3,5.1)
drug2 <- c(6.2,5.2,5.5,5,4.4,5.4,5,6.4,5.8,6.2)
drug3 <- c(7.0,6.2,5.9,6,4.6,6.4,5,6.4,5.8,6.2)
#矩阵
data <- matrix(c(drug1,drug2,drug3),nrow = 10,dimnames = list(ID=1:10,c('drug1','drug2','drug3')))
#查看数据
data
    
ID   drug1 drug2 drug3
  1    4.4   6.2   7.0
  2    5.0   5.2   6.2
  3    5.8   5.5   5.9
  4    4.6   5.0   6.0
  5    4.9   4.4   4.6
  6    4.8   5.4   6.4
  7    6.0   5.0   5.0
  8    5.9   6.4   6.4
  9    4.3   5.8   5.8
  10   5.1   6.2   6.2
#调用friedman.test函数
friedman.test(data)

 Friedman rank sum test

data:  data
Friedman chi-squared = 6.8889, df = 2, p-value =
0.03192
#结果显示,三种药之间存在区别。

补充:R语言置换检验

置换检验

双样本均值检验的时候,假设检验的方法就是,检查正态性、独立性、方差齐性,分别对应的参数非参数方法进行假设检验,但是,这些方法都要求样本数必须有多少多少,但是,由于试验时,各种条件的限制,导致样本量过小,此时以上方法几乎都会失真,置换检验就应运而生了。

Permutation test 置换检验是Fisher于20世纪30年代提出的一种基于大量计算 (computationally intensive),利用样本数据的全(或随机)排列,进行统计推断的方法,因其对总体分布自由,应用较为广泛,特别适用于总体分布未知的小样本资料,以及某些难以用常规方法分析资料的假设检验问题。在具体使用上它和Bootstrap Methods类似,通过对样本进行顺序上的置换,重新计算统计检验量,构造经验分布,然后在此基础上求出P-value进行推断。

置换检验的操作方法:假设有两组待检数据,A组有m个数据,B组有n个数据,均值差为d0,现把所有数据放在一起进行随机抽取,抽出m个放入A组,剩下n个放入B组,计算A、B两组的均值差记为d1,再放在一起进行随机重抽m、n两组,得到均值差记为d2,重复这个步骤k次得到(d3……dk),于是d1……dk可以画出一张正态图,然后看d0落在什么方,若落在置信水平之外,即可以显著说明它们是有差异的。

R代码如下:


a<-c(24,43,58,67,61,44,67,49,59,52,62,50,42,43,65,26,33,41,19,54,42,20,17,60,37,42,55,28)
group<-factor(c(rep("A",12),rep("B",16)))
data<-data.frame(group,a)
find.mean<-function(x){
    mean(x[group=="A",2])-mean(x[group=="B",2]) 
} 
results<-replicate(999,find.mean(data.frame(group,sample(data[,2])))) 
p.value<-length(results[results>mean(data[group=="A",2])-mean(data[group=="B",2])])/1000
hist(results,breaks=20,prob=TRUE)
lines(density(results))

coin包置换检验

coin包介绍

coin包中的置换检验有以下几种:

检 验 coin函数
两样本和K样本置换检验 oneway_test(y ~ A)
含一个分层(区组)因子的两样本和K样本置换检验 oneway_test(y ~ A | C)
Wilcoxon-Mann-Whitney秩和检验 wilcox_test(y ~ A)
Kruskal-Wallis检验 kruskal_test(y ~ A)
Person卡方检验 chisq_test(A ~ B)
Cochran-Mantel-Haenszel检验 cmh_test(A ~ B | C)
线性关联检验 lbl_test(D ~ E)
Spearman检验 spearman_test(y ~ x)
Friedman检验 friedman_test(y ~ A | C)
Wilcoxon符号秩检验 wilcoxsign_test(y1 ~ y2)

注:在上表中,y和x是数值变量,A和B是分类因子,C是类别型区组变量,D和E是有序因子,y1和y2是相匹配的值变量

表中所有的函数使用方法都一样:

functionName(fORMula,dataframe,distribution),其中distribution指定经验分布在零假设条件下的形式,可能值有exact,asymptotic和approximate,若distribution = "exact",那么在零假设条件下,分布的计算是精确的(即依据所有可能的排列组合)。当然,也可以根据它的渐进分布(distribution = "asymptotic")或蒙特卡洛重抽样(distribution = "approxiamate(B = #)")来做近似计算,其中#指所需重复的次数。distribution = "exact"当前仅可用于两样本问题。

原函数与置换检验比较

函数 简介 程序及结果
t.test() 双样本均值t检验 > score <- c(40, 57, 45, 55, 58, 57, 64, 55, 62, 65) > treatment <- factor(c(rep(“A”, 5), rep(“B”, 5))) > mydata <- data.frame(treatment, score) > t.test(score ~ treatment, data = mydata, var.equal = TRUE)           Two Sample t-test data: score by treatment t = -2.345, df = 8, p-value = 0.04705 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:   -19.0405455    -0.1594545 sample estimates: mean in group A mean in group B      51.0     60.6
oneway_test() 双样本均值置换检验 > oneway_test(score ~ treatment, data = mydata, distribution = “exact”)     Exact Two-Sample Fisher-Pitman Permutation Test data: score by treatment (A, B) Z = -1.9147, p-value = 0.07143 alternative hypothesis: true mu is not equal to 0
wilcox.test() 双样本秩和独立性检验 > wilcox.test(Prob~So,data=UScrime)      Wilcoxon rank sum test data: Prob by So W = 81, p-value = 8.488e-05 alternative hypothesis: true location shift is not equal to 0
wilcox_test() 双样本秩和独立性置换检验 > UScrime2 <- transform(UScrime, So = factor(So)) > wilcox_test(Prob ~ So, data = UScrime2, distribution = “exact”)     Exact Wilcoxon-Mann-Whitney Test data: Prob by So (0, 1) Z = -3.7493, p-value = 8.488e-05 alternative hypothesis: true mu is not equal to 0
aov() 单因素方差分析 > library(multcomp) >summary(aov(response~trt,data=cholesterol))   Df Sum Sq  Mean Sq  F value Pr(>F) trt 4 1351.4   337.8    32.43  9.82e-13 *** Residuals 45 468.8 10.4
oneway_test() K样本置换检验 > oneway_test(response ~ trt, data = cholesterol, distribution = approximate(B = 9999))   Approximative K-Sample Fisher-Pitman Permutation Test data: response by trt (1time, 2times, 4times, drugD, drugE) chi-squared = 36.381, p-value < 2.2e-16
chisq.test() 卡方列联表均值差异检验 > chisq.test(xtabs(~Treatment+Improved,Arthritis))    Pearson's Chi-squared test data: xtabs(~Treatment + Improved, Arthritis) X-squared = 13.055, df = 2, p-value = 0.001463
chisq_test() 卡方置换检验 > chisq_test(Treatment ~ Improved, data = transform(Arthritis, Improved = as.factor(as.numeric(Improved))),distribution = approximate(B = 9999))    Approximative Pearson Chi-Squared Test data: Treatment by Improved (1, 2, 3) chi-squared = 13.055, p-value = 0.0012
mantelhaen.test() 分层卡方检验,看是否把相关因素划分出去 > mytable <- xtabs(~Treatment+Improved+Sex, data=vcd::Arthritis) > mantelhaen.test(mytable)     Cochran-Mantel-Haenszel test data: mytable Cochran-Mantel-Haenszel M^2 = 14.632, df = 2, p-value = 0.0006647
cmh_test() 分层卡方置换检验,看是否把相关因素划分出去 > cmh_test(mytable)    Asymptotic Generalized Cochran-Mantel-Haenszel Test data: Improved by Treatment (Placebo, Treated) stratified by Sex chi-squared = 14.632, df = 2, p-value = 0.0006647
cor() spearman等级相关系数 > with(states,cor(Illiteracy,Murder,method=”spearman”)) [1] 0.6723592
spearman_test() 数值独立性置换检验(两数值变量独立即不相关) > spearman_test(Murder~Illiteracy,data=states)    Asymptotic Spearman Correlation Test data: Murder by Illiteracy Z = 4.7065, p-value = 2.52e-06 alternative hypothesis: true rho is not equal to 0
t.test(paired=T) 非独立样本的配对t检验,检验均值是否相等 > with(MASS::UScrime,t.test(U1,U2,paired=TRUE))      Paired t-test data: U1 and U2 t = 32.407, df = 46, p-value < 2.2e-16 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 57.67003 65.30870 sample estimates: mean of the differences 61.48936
wilcoxsign_test() wilcox符号秩置换检验,检验均值是否相等 > wilcoxsign_test(U1 ~ U2, data = MASS::UScrime,distribution = “exact”)    Exact Wilcoxon-Pratt Signed-Rank Test data: y by x (pos, neg) stratified by block Z = 5.9691, p-value = 1.421e-14 alternative hypothesis: true mu is not equal to 0
friedman_test() 多组别独立性置换检验,检验均值是否相等 > USc<-MASS::UScrime[,c(“U1”,”U2”)] > USc$U3<-sample(as.matrix(USc),47) >friedman_test(value~variable|ID,data=transform(reshape::melt(data.frame(USc,ID=seq(1,47)),id.vars=”ID”),ID=as.factor(ID)))       Asymptotic Friedman Test data: value by variable (U1, U2, U3) stratified by ID chi-squared = 51.384, df = 2, p-value = 6.953e-12

coin包的介绍至此结束,当然还有一个lbl_test()函数未列出,暂时还不晓得有什么用,以后再说。

lmPerm包置换检验

lmPerm包介绍  

lmPerm包可以做非正态理论检验,包含的函数为lmp()以及aovp()两个,它们与lm()和aov()类似,只是多了一个perm参数(perm=”Exact”,”Prob”,”SPR”),参数值”Exact”根据所有可能的排列组合生成精确检验,”Prob”从所有可能的排列中不断抽样,直至估计的标准差在估计的p值0.1之下,判停准则由可选的Ca参数控制,SPR使用贯序概率比检验来判断何时停止抽样。若观测数大于10,perm=”Exact”会自动转化为perm=”Prob”,因为精确检验只适用于小样本问题。   

因为只涉及了两个函数,这个包就不贴代码和结果,仅说明一下差异是什么,

回归(简单、多项式、多元)  

首先是lm与lmp,除了函数的用法多了个perm参数之外,所得结果模板(注意,是模板,而非结果,结果出现差异应该去找数据的问题,如两者结果不一致,则需要重新审视数据的可靠性)存在差异:   

1)少了常数项,但可以通过各变量均值求得,注意,使用coefficients(fit)所得的常数项是错的! 根据回归线必过均值点的定义,可以使用各变量的均值来计算其常数项。如多元分析中的例子计算方式为:

mean(states$Murder)-sum(colMeans(states)[names(coefficients(fit)[c(-1)])]*(coefficients(fit)[c(-1)]))

2)回归系数项中多了Iter一栏,它表示要达到判停准则所需要的迭代次数。

方差分析  

与回归一致,所有使用aov分析的地方都可以使用aovp来代替,区别就是,aov用的是F统计量,而aovp使用的是置换法,Iter为判停准则的迭代次数。   

需要注意的是,aovp使用的是唯一平方和方法,每种效应根据其它效应进行调整,而aov使用的是序贯平方平法,每种效应根据先出现的效应进行调整,这两个方法在不平衡设计中所得结果不同,越不平衡的设计,差异越大。可以在aovp函数里加入参数seqs=TRUE可以生成序贯平方和的计算结果。   

点评  

置换检验真正发挥功用的地方是处理非正态数据(如分布偏倚很大)、存在离群点、样本很小或无法做参数检验等情况。不过,如果初始样本对感兴趣的总体情况代表性很差,即使是置换检验也无法提高推断效果。   

自助法  

置换检验主要用于生成检验零假设的p值,它有助于回答“效应是否存在”这样的问题。不过,置换方法对于获取置信区间和估计测量精度是比较困难的。幸运的是,这正是自助法大显神通的地方。   

自助法的步骤:   

1. 一个样本数为n的样本,进行m次有放回抽样;   

2. 计算并记录样本统计量(比如均值、方差、甚至t检验量等,可以一个,可以多个);   

3. 重复1000到2000次,或者更多,并把它们从小到大进行排序;   

4. 根据双尾95%分位点,即2.5%和97.5%分位数,即为95%置信区间的下限和上限。

boot包  

boot包可以进行自助法抽检,并生成相应的置信区间。   

主要的步骤如下:   

1. 定义函数,返回一个统计值或一个向量(多个统计值),函数要包括indices参数,以便boot()函数用它从每个重复中选择实例,主要是stype参数,默认为i(索引值),还有f(频率)和w(权重),indices可以简定为i;   

2. 用boot(data,sitisctic,R,……)函数生成一个bootobject。   

3. 使用boot.ci(bootobject,conf,type)生成置信区间,其中conf定义置信区间,type定义置信区间类型(即计算方法),包含norm、basic、stud、perc、bca和all(其中norm为正态分布的置信区间计算方法,约两个标准差距离,perc为上下分位数计算方法,stud为t分布计算方法),若返回值为向量,则利用index参数来指定某个变量的置信区间。   

4. 其它相关数据:比如bootobjectt为重复R次的统计量值(一个“R*统计量个数”的矩阵)

最后谨记:置换检验和自助法并不是万能的,它们无法将烂数据转化为好数据。当初始样本对于总体情况的代表性不佳,或者样本量过小而无法准确地反映总体情况,这些方法也是爱莫能助。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。

--结束END--

本文标题: R语言差异检验:非参数检验操作

本文链接: https://lsjlt.com/news/123844.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • R语言差异检验:非参数检验操作
    非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态进行推断的方法。它利用数据的大小间的次序关系(秩Rank),而不是具体数值信息,得出推断结论。 它是参数检验所...
    99+
    2024-04-02
  • R语言wilcoxon秩和检验及wilcoxon符号秩检验的操作
    说明 wilcoxon秩和及wilcoxon符号秩检验是对原假设的非参数检验,在不需要假设两个样本空间都为正态分布的情况下,测试它们的分布是否完全相同。 操作 #利用mtcars...
    99+
    2024-04-02
  • R语言 检验多重共线性的操作
    函数kappa() df<-data.frame() df_cor=cor(df) kappa(df_cor, exact=T) 当 κ<100κ<100 ...
    99+
    2024-04-02
  • 基于R语言 数据检验详解
    目录1. W检验(Shapiro–Wilk (夏皮罗–威克尔 ) W统计量检验)2. K检验(经验分布的Kolmogorov-Smirnov检验)3. 相关性...
    99+
    2024-04-02
  • R语言如何实现检验多重共线性的操作
    小编给大家分享一下R语言如何实现检验多重共线性的操作,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!函数kappa()df<-data.frame()df_cor=cor(df)kappa(df_cor, e...
    99+
    2023-06-14
  • R语言-如何实现卡方检验
    卡方检验 在数据统计中,卡方检验是一种很重要的方法。 通常卡方检验的应用主要为: 1、 卡方拟合优度检验 2、卡方独立性检验 本文主要通过使用自己编程的方法实现相关检验。 卡方拟合优...
    99+
    2024-04-02
  • R语言如何检验数据缺失类型
    这篇文章将为大家详细讲解有关R语言如何检验数据缺失类型,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。题目解答由于题目要求需要重复三次类似的操作,故首先载入所需要的包,构造生成数据的函数以及绘图的函数:li...
    99+
    2023-06-25
  • R语言关于卡方检验实例详解
    卡方检验是一种确定两个分类变量之间是否存在显着相关性的统计方法。 这两个变量应该来自相同的人口,他们应该是类似 是/否,男/女,红/绿等。 例如,我们可以建立一个观察人们的冰淇淋购买...
    99+
    2024-04-02
  • R语言刷题检验数据缺失类型过程详解
    目录题目解答下面考虑三种情况:1. a = 0, b = 02. a = 2, b = 03. a = 0, b = 2题目 解答 由于题目要求需要重复三次类似的操作,故首先载入...
    99+
    2024-04-02
  • r语言中怎么进行假设检验和置信区间估计
    在R语言中,可以使用不同的函数和包来进行假设检验和置信区间估计。以下是一些常用的方法: 1、假设检验: t检验:使用t.test(...
    99+
    2024-03-02
    r语言
  • 仿写C语言string.h头文件检验字符串函数
    目录c语言string.h头文件字符串检验函数仿写strlen字符串求长度strcmp / strncmp字符串比较strchr / strrchr 字符串中查找字符ch第一个出现的...
    99+
    2024-04-02
  • 数据库实验1 数据库定义与操作语言实验
    前言:实验本身并不是很难,照着实验指导书抄就行,不过注意有些sql语句和mysql语句是不相同的,需要进行一定的修改 数据集链接 实验1 数据库定义与操作语言实验 实验1.1 数据库定义实验 1.实验...
    99+
    2023-10-20
    数据库 mysql sql
  • 怎么仿写C语言string.h头文件检验字符串函数
    这篇文章主要讲解了“怎么仿写C语言string.h头文件检验字符串函数”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么仿写C语言string.h头文件检验字符串函数”吧!c语言string...
    99+
    2023-06-25
  • 构建高性能的数据存储与检索系统:Go语言开发经验总结
    构建高性能的数据存储与检索系统:Go语言开发经验总结引言:随着大数据和云计算时代的到来,数据存储和检索成为了现代计算的重要组成部分。构建高性能的数据存储与检索系统,是提高计算效率和数据处理速度的重要手段之一。本文将从Go语言开发的角度,总结...
    99+
    2023-11-20
    Go语言 构建 高性能 数据存储 检索系统
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作