返回顶部
首页 > 资讯 > 后端开发 > Python >浅谈Pandas dataframe数据处理方法的速度比较
  • 922
分享到

浅谈Pandas dataframe数据处理方法的速度比较

2024-04-02 19:04:59 922人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

数据修改主要以增删改差为主,这里比较几种写法在数据处理时间上的巨大差别。 数据量大概是500万行级别的数据,文件大小为100M。 1.iloc iloc是一种速度极其慢的写法。这里我

数据修改主要以增删改差为主,这里比较几种写法在数据处理时间上的巨大差别。

数据量大概是500万行级别的数据,文件大小为100M。

1.iloc

iloc是一种速度极其慢的写法。这里我们对每个csv文件中的每一行循环再用iloc处理,示例代码如下:


for index in range(len(df)):
   df.iloc['attr'][index] = xxx

使用这种方法对五百万行的数据进行处理大概需要5个小时,实在是很慢。

2.at

at相比于iloc有了很大的性能提升,也是for循环处理,示例代码如下:


for i in range(len(df)):
  if df.at[i,'attr'] > 0:
    sum_positive += df.at[i,'attr']
  else:
    sum_negetive += df.at[i,'sttr']

在我的程序里at和iloc是可以通用的,用at,程序的速度会有大幅提高,大概10分钟,但是还不够。

3.apply(lambda x:...)

想说apply是因为我觉得for循环速度太慢,想在循环上对程序进行优化。然后网上有人说apply可以大幅度提升速度,然而经过测试发现在我的程序里,使用apply和for差不多吧,性能也一般。

4.直接用series处理

这才是真正优化for循环的方法,以上面at的程序为例,可以改写为:


sum_positive += df['attr'][df.attr > 0].sum()
sum_negative += df['attr'][df.attr < 0].sum()

将程序都改为series处理,快了很多,最后500万行的数据大概需要37秒能跑完,基本符合预期。

这里提两句关于dataframe属性筛选,也就是上面df.attr > 0这一部分。首先pandas这个属性筛选实在是很强大,很方便。

其次是我们属性筛选的时候不要去修改属性,而是修改后面的数字,比如,我们不要这样写:

float(df.attr )> 0,而是这样写:

df.attr > str(0),因为df.attr作为属性是不能随便动的。

补充:pandas中DataFrame单个数据提取效率与修改效率

目标

使用pandas处理金融数据及建模中经常需要按时间序列顺序循DataFrame数据,读取具体位置的数据判断或修改。经验上这种操作要比直接对二维列表或者np.array格式数据慢的多,原因可能在于index及columns层次的查找(两个字典,都不是连续数组,每次查找定位都需要时间)和DataFrame中数据的内存布局,有机会以后再深入研究。

这里做一组数值实验对比几种方法的效率。

生成数据

先生成一个二维数组随机数作为DataFrame数据,不失一般性,并把列名、行名设为标记顺序的字符串


import numpy as np
import pandas as pd

from copy import deepcopy
from time import time

np.random.seed(20000)
I = 900
df = pd.DataFrame(np.random.standard_nORMal((I, I)),
   columns=['c'+str(_) for _ in range(I)],
         index=['i'+str(_) for _ in range(I)])

然后从限定范围内随机生成取值位置,为了方便对比,把随机坐标与字符串名对应起来


columns_num = np.floor(np.random.uniform(0, 1, I) * I).astype(int)
index_num = np.floor(np.random.uniform(0, 1, I) * I).astype(int)

columns_str = ['c'+str(_) for _ in columns_num]
index_str = ['i'+str(_) for _ in index_num]

读取测试

首先传统方法,直接取columns及index中名称定位


t0 = time()
for m in columns_str:
  for n in index_str:
    c = df[m][n]
print(time()-t0)

6.789840459823608

先columns列名后在values中取行坐标,速度快了一些


t0 = time()
for m in columns_str:
  for n in index_num:
    c = df[m].values[n]
print(time()-t0)

1.9697318077087402

loc方法,速度和直接取columns及index中名称定位差不多


t0 = time()
for m in columns_str:
  for n in index_str:
    c = df.loc[n, m]
print(time()-t0)

5.661889314651489

at方法,比loc快一点,毕竟loc可以切片的


t0 = time()
for m in columns_str:
  for n in index_str:
    c = df.at[m, n]
print(time()-t0)

3.3770089149475098

假设知道具体横纵坐标后,我们再比较:

还是从取values开始,也很慢,看来每次从df中取values很耗时


t0 = time()
for m in columns_num:
  for n in index_num:
    c = df.values[n][m]
print(time()-t0)

6.041872024536133

iloc试一下,没什么区别


t0 = time()
for m in columns_num:
  for n in index_num:
    c = df.iloc[n, m]
print(time()-t0)

6.103677034378052

iat做对比,提升不大,有点失望


t0 = time()
for m in columns_num:
  for n in index_num:
    c = df.iat[n, m]
print(time()-t0)

4.375299692153931

最后最高效的方法,还是先取二维数组来再定位


t0 = time()
b = df.values
for m in columns_num:
  for n in index_num:
    c = b[n][m]
print(time()-t0)

0.6402544975280762

修改测试

重复刚才的过程,把对应值改为0作为简单测试方式,别忘了原始数据要备份

取columns及index中名称定位


df_backup = deepcopy(df)
t0 = time()
for m in columns_str:
  for n in index_str:
    df_backup[m][n] = 0.0
print(time()-t0)

41.99269938468933

先columns列名后在values中取行坐标


df_backup = deepcopy(df)
t0 = time()
for m in columns_str:
  for n in index_num:
    df_backup[m].values[n] = 0.0
print(time()-t0)

2.215076208114624

loc方法


df_backup = deepcopy(df)
t0 = time()
for m in columns_str:
  for n in index_str:
    df_backup.loc[n, m] = 0.0
print(time()-t0)

134.39290761947632

at方法,在修改数值上竟然比loc快这么多


df_backup = deepcopy(df)
t0 = time()
for m in columns_str:
  for n in index_str:
    df_backup.at[n, m] = 0.0
print(time()-t0)

4.7453413009643555

在values上改,也是不错的,和读取相近,看来还都是在每次提取values上耗时


df_backup = deepcopy(df)
t0 = time()
for m in columns_num:
  for n in index_num:
    df.values[n][m] = 0.0
print(time()-t0)

6.346027612686157

iloc方法


df_backup = deepcopy(df)
t0 = time()
for m in columns_num:
  for n in index_num:
    df.iloc[n, m] = 0.0
print(time()-t0)

122.33384037017822

iat方法


df_backup = deepcopy(df)
t0 = time()
for m in columns_num:
  for n in index_num:
    df.iat[n, m] = 0.0
print(time()-t0)

5.381632328033447

取二维数组来再定位


df_backup = deepcopy(df)
t0 = time()
b = df.values
for m in columns_num:
  for n in index_num:
    c = b[n][m]
print(time()-t0)

0.4298992156982422

总结

效率上肯定是直接取数值最优的,这次系统性比较做个记录。代码写的有点啰嗦了,不过方便复制实验。在建模级别的代码上我还是习惯于用第2种方法,主要是鉴于代码可读性、维护和修改上。代码会在key上告诉我这里是什么,直观易读。

以前也曾为了提高代码运行效率写过先提取二维数组的,但columns多了就很费劲,重读还需要转译一遍。当然也可以把数据写成类,但是感觉和pandas不好融合,从建模和研究效率上没有太好的解决方案。之后会找时间再研究DataFrame内部机制。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。

--结束END--

本文标题: 浅谈Pandas dataframe数据处理方法的速度比较

本文链接: https://lsjlt.com/news/122988.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作