返回顶部
首页 > 资讯 > 后端开发 > Python >pytorch动态神经网络(拟合)实现
  • 275
分享到

pytorch动态神经网络(拟合)实现

2024-04-02 19:04:59 275人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

(1)首先要建立数据集 import torch #引用torch模块 import matplotlib.pyplot as plt #引用画图模块 x=torch.uns

(1)首先要建立数据集


import torch  #引用torch模块
import matplotlib.pyplot as plt #引用画图模块
x=torch.unsqueeze(torch.linspace(-1,1,100),dim=1)#产生(-1,1)的100个点横坐标,dim表示维度,表示在这里增加第二维
y=x.pow(2)+0.2*torch.rand(x,size())
#0.2*torch.rand(x,size())是为了产生噪点使数据更加真实

(2)建立神经网络


import torch
imoort torch.nn.functional as F #激励函数在这个模块里
class Net (torch.nn.Module): #Net要继承torch中Module 
(1)首先有定义(建立)神经网络层
def __init__(self,n_feature,n_hidden,n_output):
#__init__表示初始化数据
  super(Net,self).__init__()#Net的对象self转换为类nn.module的对象,然后在用nn.Module的方法使用__init__初始化。
self.hidden=torch.nn.Linear(n_feature,n_hidden)
#建立隐藏层线性输出
self.predict=torch.nn.Linear(n_hidden,n_output)
#建立输出层线性输出

(2)建立层与层之间的关系


def forward (self,x):
# 这同时也是 Module 中的 forward 功能
x=F.relu(self,hidden(x))
#使用激励函数把数据激活
return x #输出数据
net=Net(n_feature=1,n_hidden=10,n_output=1)
#一个隐藏层有10节点,输出层有1节点,输出数数据为一个

(3)训练网络


optimizer=torch.optim.SGD(net.parameter().lr=0.2)#传入 net 的所有参数, lr代表学习率,optimizer是训练工具
loss_func=torch.nn.MSELoss()#预测值和真实值的误差计算公式 (均方差)
for t in range(100):
prediction = net(x) # 喂给 net 训练数据 x, 输出预测值
  loss = loss_func(prediction, y)  # 计算两者的误差
  optimizer.zero_grad() # 清空上一步的残余更新参数值
  loss.backward()    # 误差反向传播, 计算参数更新值
  optimizer.step()    # 将参数更新值施加到 net 的 parameters 上

(四)可视化训练


import matplotlib.pyplot as plt
plt.ion() # 画图
plt.show()
for t in range(200):
  ...
  loss.backward()
  optimizer.step() 
  # 接着上面来
  if t % 5 == 0:
    # plot and show learning process
    plt.cla()
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
    plt.pause(0.1)

会得到如下图像:

整体代码如下:


import torch
import matplotlib.pyplot as plt
x=torch.unsqueeze(torch.linspace(-2,2,100),dim=1)
y=x.pow(2)+0.2*torch.rand(x.size())
import torch
import torch.nn.functional as F
class Net(torch.nn.Module):
  def __init__(self,n_feature,n_hidden,n_output):
    super(Net,self).__init__()
    self.hidden=torch.nn.Linear(n_feature,n_hidden)
    self.predict=torch.nn.Linear(n_hidden,n_output)
  def forward(self,x):
    x=F.relu(self.hidden(x))
    x=self.predict(x)
    return x
net=Net(n_feature=1,n_hidden=10,n_output=1)
optimizer=torch.optim.SGD(net.parameters(),lr=0.3)
loss_func=torch.nn.MSELoss()
plt.ion() 
plt.show()
for t in range(100):
  prediction=net(x)
  loss=loss_func(prediction,y)
  optimizer.zero_grad() 
  loss.backward()    
  optimizer.step()
  if t % 5 == 0:
 
    plt.cla()
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
    plt.pause(0.1)

【参考文献】https://mofanpy.com/tutorials/Machine-learning/torch/regression/

到此这篇关于PyTorch动态神经网络(拟合)实现的文章就介绍到这了,更多相关pytorch动态神经网络内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: pytorch动态神经网络(拟合)实现

本文链接: https://lsjlt.com/news/122266.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • pytorch动态神经网络(拟合)实现
    (1)首先要建立数据集 import torch #引用torch模块 import matplotlib.pyplot as plt #引用画图模块 x=torch.uns...
    99+
    2024-04-02
  • pytorch动态神经网络的实现方法
    这篇文章主要介绍了pytorch动态神经网络的实现方法,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。(1)首先要建立数据集import torch &nb...
    99+
    2023-06-14
  • pytorch怎么实现bp神经网络
    要在PyTorch中实现一个BP神经网络,需要遵循以下步骤: 定义神经网络结构:首先,需要定义神经网络的结构,包括输入层、隐藏层和...
    99+
    2024-04-08
    pytorch
  • pytorch简单实现神经网络功能
    目录一、基本(1)利用pytorch建好的层进行搭建(2)使用网络二、进阶一、基本 (1)利用pytorch建好的层进行搭建 import torch from torch impo...
    99+
    2024-04-02
  • Pytorch卷积神经网络resent网络实践
    目录前言一、技术介绍二、实现途径三、总结前言 上篇文章,讲了经典卷积神经网络-resnet,这篇文章通过resnet网络,做一些具体的事情。 一、技术介绍 总的来说,第一步首先要加载...
    99+
    2024-04-02
  • PyTorch+PyG实现图神经网络经典模型目录
    前言 大家好,我是阿光。 本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码...
    99+
    2023-08-31
    pytorch 神经网络 python 人工智能 深度学习
  • 基于Pytorch的神经网络之Regression的实现
    目录1.引言2.神经网络搭建2.1准备工作2.2搭建网络2.3训练网络3.效果4.完整代码1.引言 我们之前已经介绍了神经网络的基本知识,神经网络的主要作用就是预测与分类,现在让我们...
    99+
    2024-04-02
  • 基于Pytorch的神经网络如何实现Regression
    这篇文章将为大家详细讲解有关基于Pytorch的神经网络如何实现Regression,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1.引言我们之前已经介绍了神经网络的基本知识,神经网络的主要作用就是预测与...
    99+
    2023-06-29
  • PyTorch中的卷积神经网络怎么实现
    在PyTorch中,可以使用torch.nn模块中的Conv2d类来实现卷积神经网络。以下是一个简单的示例,展示如何在PyTorch...
    99+
    2024-03-05
    PyTorch
  • python实现神经网络
    声明:本文是A Neural Network in 11 lines of Python学习总结而来,关于更详细的神经网络的介绍可以参考从感知机到人工神经网络。 如果你读懂了下面的文章,你会对神经网络有更深刻的认识,有任何问题,请...
    99+
    2023-01-31
    神经网络 python
  • PyTorch实现卷积神经网络的搭建详解
    目录PyTorch中实现卷积的重要基础函数1、nn.Conv2d:2、nn.MaxPool2d(kernel_size=2)3、nn.ReLU()4、x.view()全部代码PyTo...
    99+
    2024-04-02
  • Python PyTorch:神经网络从零到一
    一、神经网络简介 神经网络是一种受人类大脑启发的机器学习模型。它由许多相互连接的单元组成,称为神经元。神经元可以接收和处理信息,并将其传递给其他神经元。神经网络可以通过训练来学习如何执行特定任务,例如识别图像或对数据进行分类。 二、PyT...
    99+
    2024-02-02
    神经网络 PyTorch 深度学习 分类
  • python神经网络pytorch中BN运算操作自实现
    BN 想必大家都很熟悉,来自论文: 《Batch Normalization Accelerating Deep Network Training by Reducing Inter...
    99+
    2024-04-02
  • 图卷积神经网络(GCN)综述与实现(PyTorch版)
    图卷积神经网络(GCN)综述与实现(PyTorch版) 本文的实验环境为PyTorch = 1.11.0 + cu113,PyG = 2.0.4,相关依赖库和数据集的下载请见链接。 一、图卷积神经...
    99+
    2023-09-28
    pytorch cnn 深度学习 python
  • pytorch 搭建神经网路的实现
    目录1 数据 (1)导入数据(2)数据集可视化(3)为自己制作的数据集创建类(4)数据集批处理(5)数据预处理2 神经网络(1)定义神经网络类(3)模型参数3 最优化模型参...
    99+
    2024-04-02
  • pytorch神经网络从零开始实现多层感知机
    目录初始化模型参数激活函数模型损失函数训练我们已经在数学上描述了多层感知机,现在让我们尝试自己实现一个多层感知机。为了与我们之前使用softmax回归获得的结果进行比较,我们将继续使...
    99+
    2024-04-02
  • PyTorch中的神经网络Mnist分类任务怎么实现
    这篇“PyTorch中的神经网络Mnist分类任务怎么实现”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“PyTorch中的神...
    99+
    2023-07-05
  • Python Pytorch深度学习之神经网络
    目录一、简介二、神经网络训练过程2、通过调用net.parameters()返回模型可训练的参数3、迭代整个输入4、调用反向传播5、计算损失值6、反向传播梯度7、更新神经网络参数总结...
    99+
    2024-04-02
  • pytorch如何搭建卷积神经网络
    在PyTorch中搭建卷积神经网络通常涉及以下步骤: 导入必要的库和模块: import torch import torch....
    99+
    2024-04-08
    pytorch
  • PyTorch的神经网络模块是什么
    PyTorch的神经网络模块是torch.nn,它提供了用于构建神经网络的模块和函数。这个模块包含了各种神经网络层(如全连接层,卷积...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作