返回顶部
首页 > 资讯 > 后端开发 > Python >Python 实现图像逐像素点取邻域数据
  • 702
分享到

Python 实现图像逐像素点取邻域数据

2024-04-02 19:04:59 702人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

图像比较大的话,在MATLAB上跑起来比较慢,用python跑就会快很多,贴此备用吧! #coding=utf-8 import pandas as pd import nump

图像比较大的话,在MATLAB上跑起来比较慢,用python跑就会快很多,贴此备用吧!


#coding=utf-8
import pandas as pd
import numpy as np
from pandas import DataFrame
from matplotlib import pyplot as plt
from matplotlib import image
import scipy
import cv2
import scipy.io as sio

#原始数据四周补0
def pad_data(data,nei_size):
 m,n = data.shape
 t1 = np.zeros([nei_size//2,n])
 data = np.concatenate((t1,data,t1))
 m,n = data.shape
 t2 = np.zeros([m,nei_size//2])
 data = np.concatenate((t2,data,t2),axis=1) 
 return data

#逐像素取大小为nei_size*nei_size的邻域数据
def gen_dataX(data,nei_size):
 x,y = data.shape
 m = x-nei_size//2*2;n = y-nei_size//2*2
 res = np.zeros([m*n,nei_size**2])
 print m,n
 k = 0
 for i in range(nei_size//2,m+nei_size//2):
  for j in range(nei_size//2,n+nei_size//2):
   res[k,:] = np.reshape(data[i-nei_size//2:i+nei_size//2+1,j-nei_size//2:j+nei_size//2+1].T,(1,-1))
   k += 1
 print k
 return res

im = sio.loadmat('data/im1.mat');
im1 = im1['im1']
nei_size=5
#邻域取训练数据
im1= pad_data(im1,nei_size)
data = gen_dataX(im1,nei_size)
sio.savemat("results/"+str(kk)+"/dataX.mat", {'dataX':dataX}) 

补充:像素之间的邻域、连接、连通等问题

1.邻域

邻域分为三类:4邻域、对角邻域和8邻域。

对于以像素P为中心的九宫格而言,一个“加号”所涵盖的四个像素被称为中心像素的4邻域,记作N4(P);角落的四个像素则是对角邻域,记作ND(P);周围全部8个像素称为中心像素的8邻域,记作N8(P)。

从左到右分别为 4邻域 对角邻域 8邻域

2.连接

两个像素为连接关系需满足两个条件:1.两个像素相互接触(邻接);2.两个像素满足某个特定的相似准则,比如像素灰度值相等或者灰度值处于同一个区间V内,这个是人为设置的。

这里容易把邻接和连接搞混,邻接就只是两个像素相邻而已,连接则需要满足灰度值的要求。

连接根据像素所在邻域的不同也分为三类:4连接、8连接和m连接。先给出它们的定义:

4连接:两个像素P和R都在区间V内,且R属于N4(P);

8连接:两个像素P和R都在区间V内,且R属于N8(P);

m连接:两个像素P和R都在区间V内,且R属于N4(P)或者R属于ND(P),且N4(P)与N4(P)交集中的像素不在V中。

我已经被这堆定义搞晕了,用图片要好理解很多:

从左到右分别为 4连接、8连接、m连接。

这里假设集合V=1,可以看出8连接和m连接的区别了吧,N4§和N4®的交集(黄色部分)如果在V中,那就是8连接;不在V中就是m连接。

除此之外,根据定义我们也可以发现4连接也是包含在m连接里面的,因此可以得到这样的包含关系:

4连接 ∈ m连接 ∈ 8连接

既然m连接包含在8连接里面了,还定义这个东西干嘛呢?课本给出的原因是为了消除8连接的“二义性”,在下面像素的连通里会用到。

3.连通

连通的定义很简单,就是由一系列连接像素组成的通路。比如这样:

连通的路线必须是唯一的,但8连接有时候会出现多条路都能走的情况,这时候m连接就派上用场了。

比如这种情况,蓝色和红色路线都能走,此时我们规定必须要走m连接,那就只剩蓝色路线了。因此m连接的实质就是:在像素间同时存在4-连接和8-连接时,优先采用4-连接,并屏蔽两个和同一像素间存在4-连接的像素之间的8-连接。

这样像素之间的这些关系就都搞明白啦~

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。

--结束END--

本文标题: Python 实现图像逐像素点取邻域数据

本文链接: https://lsjlt.com/news/121824.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作