返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >R语言多元Logistic逻辑回归应用实例
  • 523
分享到

R语言多元Logistic逻辑回归应用实例

2024-04-02 19:04:59 523人浏览 独家记忆
摘要

可以使用逐步过程确定多元逻辑回归。此函数选择模型以最小化aiC。 如何进行多元逻辑回归 可以使用阶梯函数通过逐步过程确定多元逻辑回归。此函数选择模型以最小化AIC。 通常建议不要盲

可以使用逐步过程确定多元逻辑回归。此函数选择模型以最小化aiC。

如何进行多元逻辑回归

可以使用阶梯函数通过逐步过程确定多元逻辑回归。此函数选择模型以最小化AIC。

通常建议不要盲目地遵循逐步程序,而是要使用拟合统计(AIC,AICc,BIC)比较模型,或者根据生物学或科学上合理的可用变量建立模型。

多元相关是研究潜在自变量之间关系的一种工具。例如,如果两个独立变量彼此相关,可能在最终模型中都不需要这两个变量,但可能有理由选择一个变量而不是另一个变量。

多元相关

创建数值变量的数据框


 
 
Data.num $ Status = as.numeric(Data.num $ Status)
 
Data.num $ Length = as.numeric(Data.num $ Length)
 
Data.num $ Migr = as.numeric(Data.num $ Migr)
 
Data.num $ Insect = as.numeric(Data.num $ Insect)
 
Data.num $ Diet = as.numeric(Data.num $ Diet)
 
Data.num $ Broods = as.numeric(Data.num $ Broods)
 
Data。 num $ Wood = as.numeric(Data.num $ Wood)
 
Data.num $ Upland = as.numeric(Data.num $ Upland)
 
Data.num $ Water = as.numeric(Data.num $ Water)
 
Data.num $ Release = as.numeric(Data.num $ Release)
 
Data.num $ Indiv = as.numeric(Data.num $ Indiv)
 
###检查新数据框
 
headtail(Data.num)
 
1 1 1520 9600.0 1.21 1 12 2 6.0 1 0 0 1 6 29
 
2 1 1250 5000.0 0.56 1 0 1 6.0 1 0 0 1 10 85
 
3 1 870 3360.0 0.07 1 0 1 4.0 1 0 0 1 3 8
 
77 0 170 31.0 0.55 3 12 2 4.0 NA 1 0 0 1 2
 
78 0 210 36.9 2.00 2 8 2 3.7 1 0 0 1 1 2
 
79 0 225 106.5 1.20 2 12 2 4.8 2 0 0 0 1 2
 
###检查变量之间的相关性
 
###这里使用了Spearman相关性

多元逻辑回归的例子

在此示例中,数据包含缺失值。在R中缺失值用NA表示。SAS通常会无缝地处理缺失值。虽然这使用户更容易,但可能无法确保用户了解这些缺失值的作用。在某些情况下,R要求用户明确如何处理缺失值。处理多元回归中的缺失值的一种方法是从数据集中删除具有任何缺失值的所有观察值。这是我们在逐步过程之前要做的事情,创建一个名为Data.omit的数据框。但是,当我们创建最终模型时,我们只想排除那些在最终模型中实际包含的变量中具有缺失值的观察。为了测试最终模型的整体p值,绘制最终模型,或使用glm.compare函数,我们将创建一个名为Data.final的数据框,只排除那些观察结果。

尽管二项式和poission系列中的模型应该没问题,但是对于使用某些glm拟合的步骤过程存在一些注意事项。

用逐步回归确定模型

最终模型


summary(model.final)
 
 
Coefficients:
 
       Estimate Std. Error z value Pr(>|z|)  
 
(Intercept) -3.5496482 2.0827400 -1.704 0.088322 . 
 
Upland   -4.5484289 2.0712502 -2.196 0.028093 * 
 
Migr    -1.8184049 0.8325702 -2.184 0.028956 * 
 
Mass     0.0019029 0.0007048  2.700 0.006940 **
 
Indiv    0.0137061 0.0038703  3.541 0.000398 ***
 
Insect    0.2394720 0.1373456  1.744 0.081234 . 
 
Wood     1.8134445 1.3105911  1.384 0.166455  

伪R方


$Pseudo.R.squared.for.model.vs.null
 
               Pseudo.R.squared
 
McFadden               0.700475
 
Cox and Snell (ML)          0.637732
 
Nagelkerke (Cragg and Uhler)     0.833284

模型总体p值

在最终模型中创建包含变量的数据框,并省略NA。

偏差表分析


Analysis of Deviance Table
 
 
 
Model 1: Status ~ Upland + Migr + Mass + Indiv + Insect + Wood
 
Model 2: Status ~ 1
 
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
 
1    63   30.392             
 
2    69   93.351 -6 -62.959 1.125e-11 ***

似然比检验


Likelihood ratio test
 
 
 
 #Df LogLik Df Chisq Pr(>Chisq)  
 
1  7 -15.196            
 
2  1 -46.675 -6 62.959 1.125e-11 ***

标准化残差图

简单的预测值图

在最终模型中创建包含变量的数据框,并在NA中省略

过度离散检验

过度离散是glm的deviance残差相对于自由度较大的情况。这些值显示在模型的摘要中。一个指导原则是,如果deviance残差与剩余自由度的比率超过1.5,则模型过度离散。过度离散表明模型不能很好地拟合数据:解释变量可能无法很好地描述因变量,或者可能无法为这些数据正确指定模型。如果存在过度离散,一种可能的解决方案是 在glm中使用quasibinomial family选项。


Null deviance: 93.351 on 69 degrees of freedom
 
Residual deviance: 30.392 on 63 degrees of freedom
 
deviance /  df.residual
 
 
 
[1] 0.482417

评估模型的替代方法

使用逐步程序的替代或补充是将模型与拟合统计进行比较。我的compare.glm 函数将为glm模型显示AIC,AICc,BIC和伪R平方。使用的模型应该都拟合相同的数据。也就是说,如果数据集中的不同变量包含缺失值,则应该谨慎使用。如果您对使用哪种拟合统计数据没有任何偏好,您希望在最终模型中使用较少的术语,我可能会推荐AICc或BIC。

一系列模型可以与标准的anova 功能进行比较。模型应嵌套在先前模型中或anova函数列表中的下一个模型中; 和模型应该拟合相同的数据。在比较多个回归模型时,通常放宽p值为0.10或0.15。

在以下示例中,使用通过逐步过程选择的模型。请注意,虽然模型9最小化了AIC和AICc,但模型8最小化了BIC。anova结果表明模型8不是对模型7的显着改进。这些结果支持选择模型7,8或9中的任何一个。  


compareGLM(model.1, model.2, model.3, model.4, model.5, model.6,
      model.7, model.8, model.9)
 
 
 
$Models
 
 FORMula                         
 
1 "Status ~ 1"                       
 
2 "Status ~ Release"                    
 
3 "Status ~ Release + Upland"                
 
4 "Status ~ Release + Upland + Migr"            
 
5 "Status ~ Release + Upland + Migr + Mass"        
 
6 "Status ~ Release + Upland + Migr + Mass + Indiv"    
 
7 "Status ~ Release + Upland + Migr + Mass + Indiv + Insect"
 
8 "Status ~ Upland + Migr + Mass + Indiv + Insect"     
 
9 "Status ~ Upland + Migr + Mass + Indiv + Insect + Wood" 
 
 
 
$Fit.criteria
 
 Rank Df.res  AIC AICc  BIC McFadden Cox.and.Snell Nagelkerke  p.value
 
1  1   66 94.34 94.53 98.75  0.0000    0.0000   0.0000    Inf
 
2  2   65 62.13 62.51 68.74  0.3787    0.3999   0.5401 2.538e-09
 
3  3   64 56.02 56.67 64.84  0.4684    0.4683   0.6325 3.232e-10
 
4  4   63 51.63 52.61 62.65  0.5392    0.5167   0.6979 7.363e-11
 
5  5   62 50.64 52.04 63.87  0.5723    0.5377   0.7263 7.672e-11
 
6  6   61 49.07 50.97 64.50  0.6118    0.5618   0.7588 5.434e-11
 
7  7   60 46.42 48.90 64.05  0.6633    0.5912   0.7985 2.177e-11
 
8  6   61 44.71 46.61 60.14  0.6601    0.5894   0.7961 6.885e-12
 
9  7   60 44.03 46.51 61.67  0.6897    0.6055   0.8178 7.148e-12
 
 
Analysis of Deviance Table
 
 
 
Model 1: Status ~ 1
 
Model 2: Status ~ Release
 
Model 3: Status ~ Release + Upland
 
Model 4: Status ~ Release + Upland + Migr
 
Model 5: Status ~ Release + Upland + Migr + Mass
 
Model 6: Status ~ Release + Upland + Migr + Mass + Indiv
 
Model 7: Status ~ Release + Upland + Migr + Mass + Indiv + Insect
 
Model 8: Status ~ Upland + Migr + Mass + Indiv + Insect
 
Model 9: Status ~ Upland + Migr + Mass + Indiv + Insect + Wood
 
 
 
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
 
1    66   90.343            
 
2    65   56.130 1  34.213 4.94e-09 ***
 
3    64   48.024 1  8.106 0.004412 **
 
4    63   41.631 1  6.393 0.011458 * 
 
5    62   38.643 1  2.988 0.083872 . 
 
6    61   35.070 1  3.573 0.058721 . 
 
7    60   30.415 1  4.655 0.030970 * 
 
8    61   30.710 -1  -0.295 0.587066  
 
9    60   28.031 1  2.679 0.101686

总结

到此这篇关于R语言多元LoGIStic逻辑回归应用的文章就介绍到这了,更多相关R语言多元逻辑回归内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: R语言多元Logistic逻辑回归应用实例

本文链接: https://lsjlt.com/news/121390.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • R语言多元Logistic逻辑回归应用实例
    可以使用逐步过程确定多元逻辑回归。此函数选择模型以最小化AIC。 如何进行多元逻辑回归 可以使用阶梯函数通过逐步过程确定多元逻辑回归。此函数选择模型以最小化AIC。 通常建议不要盲...
    99+
    2024-04-02
  • 在R语言中实现Logistic逻辑回归的操作
    逻辑回归是拟合回归曲线的方法,当y是分类变量时,y = f(x)。典型的使用这种模式被预测Ÿ给定一组预测的X。预测因子可以是连续的,分类的或两者的混合。 R中的逻辑回归实现...
    99+
    2024-04-02
  • 在R语言中如何实现Logistic逻辑回归的操作
    这篇文章主要介绍了在R语言中如何实现Logistic逻辑回归的操作,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。什么是R语言R语言是用于统计分析、绘图的语言和操作环境,属于G...
    99+
    2023-06-14
  • R语言中如何进行多元逻辑回归
    小编给大家分享一下R语言中如何进行多元逻辑回归,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!如何进行多元逻辑回归可以使用阶梯函数通过逐步过程确定多元逻辑回归。此函数选择模型以最小化AIC。通常建议不要盲目地遵循逐步程序,而...
    99+
    2023-06-08
  • R语言逻辑回归的示例分析
    这篇文章主要介绍R语言逻辑回归的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!逻辑回归> ###############逻辑回归> setwd("/Users/yao...
    99+
    2023-06-14
  • R语言逻辑回归深入讲解
    逻辑回归 > ###############逻辑回归 > setwd("/Users/yaozhilin/Downloads/R_edu/data") > ac...
    99+
    2024-04-02
  • 怎么在R语言中实现逻辑回归
    怎么在R语言中实现逻辑回归?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。什么是R语言R语言是用于统计分析、绘图的语言和操作环境,属于GNU系统的一个自由、免费、源代码开放的...
    99+
    2023-06-14
  • R语言多元线性回归实例详解
    目录一、模型简介二、求解过程总结一、模型简介 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两...
    99+
    2024-04-02
  • 如何使用R语言做逻辑回归详解
    目录前言首先加载需要用的包接下来建模最后我们可以根据模型来预测啦总结 前言 回归的本质是建立一个模型用来预测,而逻辑回归的独特性在于,预测的结果是只能有两种,true or...
    99+
    2024-04-02
  • R语言中逻辑回归知识点总结
    逻辑回归是回归模型,其中响应变量(因变量)具有诸如True / False或0/1的分类值。 它实际上基于将其与预测变量相关的数学方程测量二元响应的概率作为响应变量的值。 逻辑回归的...
    99+
    2024-04-02
  • R语言如何实现多元线性回归
    R小白几天的摸索 红色为输入,蓝色为输出 输入数据 先把数据用excel保存为csv格式放在”我的文档”文件夹 打开R软件,不用新建,直接写 回归计算 求三个平方和 置信区间...
    99+
    2024-04-02
  • R语言与多元线性回归分析计算案例
    目录计算实例分析模型的进一步分析计算实例 例 6.9 某大型牙膏制造企业为了更好地拓展产品市场,有效地管理库存,公司董事会要求销售部门根据市场调查,找出公司生产的牙膏销售量与销售价格...
    99+
    2024-04-02
  • 使用R语言与多元线性回归分析计算的示例
    这篇文章主要为大家展示了“使用R语言与多元线性回归分析计算的示例”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“使用R语言与多元线性回归分析计算的示例”这篇文章吧。计算实例例 6.9 某大型牙膏制...
    99+
    2023-06-20
  • R语言逻辑回归、ROC曲线与十折如何实现交叉验证
    本篇内容主要讲解“R语言逻辑回归、ROC曲线与十折如何实现交叉验证”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“R语言逻辑回归、ROC曲线与十折如何实现交叉验证”吧!1. 测试集和训练集3、7分...
    99+
    2023-06-08
  • R语言逻辑回归、ROC曲线与十折交叉验证详解
    自己整理编写的逻辑回归模板,作为学习笔记记录分享。数据集用的是14个自变量Xi,一个因变量Y的australian数据集。 1. 测试集和训练集3、7分组 australian ...
    99+
    2024-04-02
  • R语言多元线性回归是什么及如何实现
    这篇文章主要介绍“R语言多元线性回归是什么及如何实现”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“R语言多元线性回归是什么及如何实现”文章能帮助大家解决问题。一、模型简介一元线性回归是一个主要影响因...
    99+
    2023-07-02
  • 如何在R语言项目中实现多元线性回归
    这期内容当中小编将会给大家带来有关如何在R语言项目中实现多元线性回归,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。输入数据先把数据用excel保存为csv格式放在”我的文档”文件夹打开R软件,不用新建,直...
    99+
    2023-06-08
  • R语言实现线性回归的示例
    在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。 简单对来说就是用来确定两种或...
    99+
    2024-04-02
  • R语言实现岭回归的示例代码
    岭参数的一般选择原则 选择k(或lambda)值,使得: 各回归系数的岭估计基本稳定 用最小二乘估计时符号不合理的回归系数,其岭回归的符号变得合理 ...
    99+
    2024-04-02
  • 使用R语言怎么实现一个线性回归
    今天就跟大家聊聊有关使用R语言怎么实现一个线性回归,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一...
    99+
    2023-06-08
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作