返回顶部
首页 > 资讯 > 后端开发 > GO >GolangMutex互斥锁深入理解
  • 263
分享到

GolangMutex互斥锁深入理解

2024-04-02 19:04:59 263人浏览 独家记忆
摘要

目录引言Mutex结构饥饿模式和正常模式正常模式饥饿模式状态的切换加锁和解锁加锁自旋计算锁的新状态更新锁状态解锁可能遇到的问题锁拷贝panic导致没有unlock引言 golang的

引言

golang并发编程令人着迷,使用轻量的协程、基于CSP的channel、简单的Go func()就可以开始并发编程,在并发编程中,往往离不开锁的概念。

本文介绍了常用的同步原语 sync.Mutex,同时从源码剖析它的结构与实现原理,最后简单介绍了mutex在日常使用中可能遇到的问题,希望大家读有所获。

Mutex结构

Mutex运行时数据结构位于sync/mutex.go

type Mutex struct {
   state int32
   sema  uint32
}

其中state表示当前互斥锁的状态,sema表示 控制锁状态的信号量.

互斥锁的状态定义在常量中:

const (
   mutexLocked = 1 << iota // 1 ,处于锁定状态; 2^0
   mutexWoken // 2 ;从正常模式被从唤醒;  2^1
   mutexStarving // 4 ;处于饥饿状态;    2^2
   mutexWaiterShift = iota // 3 ;获得互斥锁上等待的Goroutine个数需要左移的位数: 1 << mutexWaiterShift
   starvationThresholdNs = 1e6 // 锁进入饥饿状态的等待时间
)

0即其他状态。

sema是一个组合,低三位分别表示锁的三种状态,高29位表示正在等待互斥锁释放的gorountine个数,和Java表示线程池状态那部分有点类似

一个mutex对象仅占用8个字节,让人不禁感叹其设计的巧妙

饥饿模式和正常模式

正常模式

在正常模式下,等待的协程会按照先进先出的顺序得到锁 在正常模式下,刚被唤醒的goroutine与新创建的goroutine竞争时,大概率无法获得锁。

饥饿模式

为了避免正常模式下,goroutine被“饿死”的情况,go在1.19版本引入了饥饿模式,保证了Mutex的公平性

在饥饿模式中,互斥锁会直接交给等待队列最前面的goroutine。新的goroutine 在该状态下不能获取锁、也不会进入自旋状态,它们只会在队列的末尾等待。

状态的切换

在正常模式下,一旦Goroutine超过1ms没有获取到锁,它就会将当前互斥锁切换饥饿模式

如果一个goroutine 获得了互斥锁并且它在队列的末尾或者它等待的时间少于 1ms,那么当前的互斥锁就会切换回正常模式。

加锁和解锁

加锁

func (m *Mutex) Lock() {
   // Fast path: grab unlocked mutex.
   if atomic.CompareAndSwapint32(&m.state, 0, mutexLocked) {
      return
   }
   // 原注释: Slow path (outlined so that the fast path can be inlined)
   // 将
   m.lockSlow()
}

可以看到,当前互斥锁的状态为0时,尝试将当前锁状态设置为更新锁定状态,且这些操作是原子的。

若当前状态不为0,则进入lockSlow方法
先定义了几个参数

var waitStartTime int64
starving := false // 
awoke := false
iter := 0
old := m.state

随后进入一个很大的for循环,让我们来逐步分析

自旋

for {
     // 1 && 2 
   if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
      //  3. 
      if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
         atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
         awoke = true
      }
      runtime_doSpin()
      iter++
      old = m.state
      continue
   }

old&(mutexLocked|mutexStarving) == mutexLocked

当且仅当当前锁状态为mutexLocked时,表达式为true

runtime_canSpin(iter) 是否满足自旋条件

  • 运行在拥有多个CPU的机器上;
  • 当前Goroutine为了获取该锁进入自旋的次数小于四次;
  • 当前机器上至少存在一个正在运行的处理器 P,并且处理的运行队列为空;

如果当前状态下自旋是合理的,将awoke置为true,同时设置锁状态为mutexWoken,进入自旋逻辑

runtime_doSpin()会执行30次PAUSE指令,并且仅占用CPU资源 代码位于:runtime\asm_amd64.s +567

//go:linkname sync_runtime_doSpin sync.runtime_doSpin
//go:nosplit
func sync_runtime_doSpin() {
   procyield(active_spin_cnt)
}
TEXT runtime·procyield(SB),NOSPLIT,$0-0
    MOVL    cycles+0(FP), AX
again:
    PAUSE 
    SUBL    $1, AX
    JNZ again
    RET

计算锁的新状态

停止了自旋后,

new := old
// 1. 
if old&mutexStarving == 0 {
   new |= mutexLocked
}
// 2.
if old&(mutexLocked|mutexStarving) != 0 {
   new += 1 << mutexWaiterShift
}
// 3 && 4. 
if starving && old&mutexLocked != 0 {
   new |= mutexStarving
}
// 5. 
if awoke {
   if new&mutexWoken == 0 {
      throw("sync: inconsistent mutex state")
   }
   new &^= mutexWoken
}
  • old&mutexStarving == 0 表明原来不是饥饿模式。如果是饥饿模式的话,其他goroutine不会执行接下来的代码,直接进入等待队列队尾
  • 如果原来是 mutexLocked 或者 mutexStarving模式,waiterCounts数加一
  • 如果被标记为饥饿状态,且锁状态为mutexLocked的话,设置锁的新状态为饥饿状态。
  • 被标记为饥饿状态的前提是 被唤醒过且抢锁失败
  • 计算新状态

更新锁状态

// 1.
if atomic.CompareAndSwapInt32(&m.state, old, new) {
      if old&(mutexLocked|mutexStarving) == 0 {
         break // locked the mutex with CAS
      }
      // 2. 
      queueLifo := waitStartTime != 0
      if waitStartTime == 0 {
         waitStartTime = runtime_nanotime()
      }
      // 3.
      runtime_SeMacquireMutex(&m.sema, queueLifo, 1)
      // 4.
      starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
      old = m.state
      // 5.
      if old&mutexStarving != 0 {
         /
         if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
            throw("sync: inconsistent mutex state")
         }
         delta := int32(mutexLocked - 1<<mutexWaiterShift)
         if !starving || old>>mutexWaiterShift == 1 {
            delta -= mutexStarving
         }
         atomic.AddInt32(&m.state, delta)
         break
      }
      awoke = true
      iter = 0
   } else {
      old = m.state
   }
}
  • 尝试将锁状态设置为new 。这里设置成功不代表上锁成功,有可能new不为mutexLocked 或者是waiterCount数量的改变
  • waitStartTime不为0 说明当前goroutine已经等待过了,将当前goroutine放到等待队列的队头
  • 走到这里,会调用runtime_SemacquireMutex 方法使当前协程阻塞,runtime_SemacquireMutex方法中会不断尝试获得锁,并会陷入休眠 等待信号量释放。
  • 当前协程可以获得信号量,从runtime_SemacquireMutex方法中返回。此时协程会去更新starving标志位:如果当前starving标志位为true或者等待时间超过starvationThresholdNs ,将starving置为true

之后会按照饥饿模式与正常模式,走不同的逻辑

  • - 在正常模式下,这段代码会设置唤醒和饥饿标记、重置迭代次数并重新执行获取锁的循环;  
  • - 在饥饿模式下,当前 Goroutine 会获得互斥锁,如果等待队列中只存在当前 Goroutine,互斥锁还会从饥饿模式中退出;

解锁

func (m *Mutex) Unlock() {
   // 1.
   new := atomic.AddInt32(&m.state, -mutexLocked)
   if new != 0 {
      // 2. 
      m.unlockSlow(new)
   }
}
  • 将锁状态的值增加 -mutexLocked 。如果新状态不等于0,进入unlockSlow方法
func (m *Mutex) unlockSlow(new int32) {
    // 1. 
   if (new+mutexLocked)&mutexLocked == 0 {
      throw("sync: unlock of unlocked mutex")
   }
   if new&mutexStarving == 0 {
      old := new
      for {
      // 2.
         if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
            return
         }
         // 2.1.
         new = (old - 1<<mutexWaiterShift) | mutexWoken
         if atomic.CompareAndSwapInt32(&m.state, old, new) {
         // 2.2.
            runtime_Semrelease(&m.sema, false, 1)
            return
         }
         old = m.state
      }
   } else {
   // 3.
      runtime_Semrelease(&m.sema, true, 1)
   }
}

1.new+mutexLocked代表将锁置为1,如果两个状态& 不为0,则说明重复解锁.如果重复解锁则抛出panic

2. 如果等待者数量等于0,或者锁的状态已经变为mutexWoken、mutexStarving、mutexStarving,则直接返回

  • 将waiterCount数量-1,尝试选择一个goroutine唤醒
  • 尝试更新锁状态,如果更新锁状态成功,则唤醒队尾的一个gorountine

3. 如果不满足 2的判断条件,则进入饥饿模式,同时交出锁的使用权

可能遇到的问题

锁拷贝

mu1 := &sync.Mutex{}
mu1.Lock()
mu2 := mu1
mu2.Unlock()

此时mu2能够正常解锁,那么我们再试试解锁mu1

mu1 := &sync.Mutex{}
mu1.Lock()
mu2 := mu1
mu2.Unlock()
mu1.Unlock()

可以看到发生了error

panic导致没有unlock

当lock()之后,可能由于代码问题导致程序发生了panic,那么mutex无法被及时unlock(),由于其他协程还在等待锁,此时可能触发死锁

func TestWithLock() {
   nums := 100
   wg := &sync.WaitGroup{}
   safeSlice := SafeSlice{
      s:    []int{},
      lock: new(sync.RWMutex),
   }
   i := 0
   for idx := 0; idx < nums; idx++ { // 并行nums个协程做append
      wg.Add(1)
      go func() {
         defer func() {
            if r := recover(); r != nil {
               log.Println("recover")
            }
            wg.Done()
         }()
         safeSlice.lock.Lock()
         safeSlice.s = append(safeSlice.s, i)
         if i == 98{
            panic("123")
         }
         i++
         safeSlice.lock.Unlock()
      }()
   }
   wg.Wait()
   log.Println(len(safeSlice.s))
}

修改:

func TestWithLock() {
   nums := 100
   wg := &sync.WaitGroup{}
   safeSlice := SafeSlice{
      s:    []int{},
      lock: new(sync.RWMutex),
   }
   i := 0
   for idx := 0; idx < nums; idx++ { // 并行nums个协程做append
      wg.Add(1)
      go func() {
         defer func() {
            if r := recover(); r != nil {
            }
            safeSlice.lock.Unlock()
            wg.Done()
         }()
         safeSlice.lock.Lock()
         safeSlice.s = append(safeSlice.s, i)
         if i == 98{
            panic("123")
         }
         i++
      }()
   }
   wg.Wait()
   log.Println(len(safeSlice.s))
}

以上就是Golang Mutex互斥锁深入理解的详细内容,更多关于Golang Mutex互斥锁的资料请关注编程网其它相关文章!

您可能感兴趣的文档:

--结束END--

本文标题: GolangMutex互斥锁深入理解

本文链接: https://lsjlt.com/news/121001.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • GolangMutex互斥锁深入理解
    目录引言Mutex结构饥饿模式和正常模式正常模式饥饿模式状态的切换加锁和解锁加锁自旋计算锁的新状态更新锁状态解锁可能遇到的问题锁拷贝panic导致没有unlock引言 Golang的...
    99+
    2024-04-02
  • 深入解析Golang中的互斥锁机制
    Golang中锁的实现机制详解 在多线程编程中,为了保证共享资源的安全性,我们经常需要使用锁。锁的作用是用来确保在同一时间只有一个线程可以访问共享资源,从而避免数据竞争导致的错误。在Golang中,提供了一些...
    99+
    2024-01-24
    (lock)
  • 举例讲解Python中的死锁、可重入锁和互斥锁
    一、死锁 简单来说,死锁是一个资源被多次调用,而多次调用方都未能释放该资源就会造成死锁,这里结合例子说明下两种常见的死锁情况。 1、迭代死锁 该情况是一个线程“迭代”请求同一个资源,直接就会造成死锁: ...
    99+
    2022-06-04
    死锁 互斥 Python
  • 如何理解Go里面的互斥锁mutex
    如何理解Go里面的互斥锁mutex,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。1. 锁的基础概念1.1 CAS与轮询1.1.1 cas实现锁 在锁的实现中现在越来越多的采用C...
    99+
    2023-06-19
  • golang互斥锁的原理是什么
    Golang中的互斥锁(Mutex)是一种用于保护共享资源的机制。当多个goroutine同时访问共享资源时,可能会导致数据竞争和不...
    99+
    2023-10-23
    golang
  • 如何理解Linux驱动中内核互斥锁
    如何理解Linux驱动中内核互斥锁,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。 互斥体概述信号量是在并行处理环境中对多个处理器访问某个公共资源进行保护的机制,mut...
    99+
    2023-06-15
  • python互斥锁问题怎么解决
    在Python中,可以使用互斥锁(Lock)来解决互斥访问问题。互斥锁是一种线程同步的机制,它可以保证在同一时刻只有一个线程能够访问...
    99+
    2023-10-23
    python
  • python多线程互斥锁与死锁问题详解
    目录一、多线程共享全局变量二、给线程加一把锁锁三、死锁问题总结一、多线程共享全局变量 代码实现的功能: 创建work01与worker02函数,对全局变量进行加一操作创建main函数...
    99+
    2024-04-02
  • Linux互斥锁的实现原理是什么
    本篇内容主要讲解“Linux互斥锁的实现原理是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Linux互斥锁的实现原理是什么”吧!互斥锁(Mutex)是在原子操作API的基础上实现的信号量行...
    99+
    2023-06-28
  • 如何理解互斥锁、自旋锁、读写锁、悲观锁、乐观锁的应用场景
    本篇内容主要讲解“如何理解互斥锁、自旋锁、读写锁、悲观锁、乐观锁的应用场景”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“如何理解互斥锁、自旋锁、读写锁、悲观锁、...
    99+
    2024-04-02
  • 深入理解mysql各种锁
    目录锁的概述锁分类对数据库操作的粒度分对数据操作的类型分mysql锁不同存储引擎支持锁级别锁介绍MyISAM表锁如何添加表锁加解锁锁竞争锁的使用情况InnoDB锁行锁锁升级间隙锁锁争...
    99+
    2024-04-02
  • Go语言底层原理互斥锁的实现原理
    目录Go 互斥锁的实现原理?概念使用场景底层实现结构操作加锁解锁Go 互斥锁正常模式和饥饿模式的区别?正常模式(非公平锁)饥饿模式(公平锁)Go 互斥锁允许自旋的条件?Go 互斥锁的...
    99+
    2024-04-02
  • Python互斥锁怎么解决多线程问题
    这篇文章给大家分享的是有关Python互斥锁怎么解决多线程问题的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。python主要应用领域有哪些1、云计算,典型应用OpenStack。2、WEB前端开发,众多大型网站均...
    99+
    2023-06-14
  • C++互斥锁原理以及实际使用介绍
    目录一、互斥原理(mutex)二、递归互斥量(Recursive Mutex)三、读写锁(Read-Write Lock)四、条件变量(Condition Variable)五、总结...
    99+
    2023-05-17
    C++ 互斥锁原理 C++ 互斥锁实际使用 C++ 互斥锁
  • Java concurrency之互斥锁_动力节点Java学院整理
    ReentrantLock介绍ReentrantLock是一个可重入的互斥锁,又被称为“独占锁”。顾名思义,ReentrantLock锁在同一个时间点只能被一个线程锁持有;而可重入的意思是,ReentrantLock锁,可以被单个线程多次获...
    99+
    2023-05-31
    java 互斥锁 concurrency
  • 一文带你了解.Net基于Threading.Mutex实现互斥锁
    本文主要讲解.Net基于Threading.Mutex实现互斥锁 基础互斥锁实现 基础概念:和自旋锁一样,操作系统提供的互斥锁内部有一个数值表示锁是否已经被获取,不同的是当获取锁...
    99+
    2024-04-02
  • C++多线程互斥锁和条件变量的详解
    目录互斥锁:std::mutex::try_lock         条件变量:condition_variable总结我们了解互斥...
    99+
    2024-04-02
  • Go语言文档解析:sync.Mutex函数实现互斥锁
    Go语言是一种开源的编程语言,其中使用了并发编程模型来处理多个任务之间的交替执行。在并发编程中,往往涉及到多个协程或线程同时访问共享资源的情况,此时就需要使用互斥锁来保证资源的独占性,避免竞态条件的发生。在Go语言中,提供了sync包来实现...
    99+
    2023-11-04
    Go语言 文档解析 syncMutex
  • 怎样深入理解mysql各种锁
    怎样深入理解mysql各种锁,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。锁的概述锁是计算机协调多个进程或线程并访问某一资源的机制在数据库中,除传统的计算机资源(如cpu、RA...
    99+
    2023-06-21
  • C++详细讲解互斥量与lock_guard类模板及死锁
    目录互斥量的基本概念互斥量的使用lock_guard类模板死锁lock与lock_guard的使用保护共享数据,操作时,用代码把共享数据锁住、操作数据、解锁 其他想操作共享数据的线程...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作