返回顶部
首页 > 资讯 > 后端开发 > Python >Tensorflow高性能数据优化增强工具Pipeline使用详解
  • 437
分享到

Tensorflow高性能数据优化增强工具Pipeline使用详解

2024-04-02 19:04:59 437人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

目录安装方法功能高级用户部分用例1,为训练创建数据Pipeline用例2,为验证创建数据Pipeline初学者部分Keras 兼容性配置增强:GridMaskMixUpRandomE

安装方法

给大家介绍一个非常好用的Tensorflow数据pipeline工具

高性能的Tensorflow Data Pipeline,使用SOTA的增强和底层优化

pip install tensorflow-addons==0.11.2
pip install tensorflow==2.2.0
pip install sklearn

功能

  • High PerfORMance tf.data pipline
  • Core tensorflow support for high performance
  • Classification data support
  • Bbox data support
  • Keypoints data support
  • Segmentation data support
  • GridMask in core tf2.x
  • Mosiac Augmentation in core tf2.x
  • CutOut in core tf2.x
  • Flexible and easy configuration
  • Gin-config support

高级用户部分

用例1,为训练创建数据Pipeline

from pipe import Funnel                                                         
from bunch import Bunch                                                         
"""                                                                             
Create a Funnel for the Pipeline!                                               
"""                                                                             
# Config for Funnel
config = {                                                                      
    "batch_size": 2,                                                            
    "image_size": [512,512],                                                    
    "transformations": {                                                        
        "flip_left_right": None,                                                
        "gridmask": None,                                                       
        "random_rotate":None,                                                   
    },                                                                          
    "cateGorical_encoding":"labelencoder"                                       
}                                                                               
config = Bunch(config)                                                          
pipeline = Funnel(data_path="testdata", config=config, datatype="categorical")  
pipeline = pipeline.dataset(type="train")                                       
# Pipline ready to use, iter over it to use.
# Custom loop example.
for data in pipeline:
    image_batch , label_batch = data[0], data[1]
    # you can use _loss = loss(label_batch,model.predict(image_batch))
    # calculate gradients on loss and optimize the model.
    print(image_batch,label_batch)                                      

用例2,为验证创建数据Pipeline

from pipe import Funnel                                                         
from bunch import Bunch                                                         
"""                                                                             
Create a Funnel for the Pipeline!                                               
"""                                                                             
# Config for Funnel
config = {                                                                      
    "batch_size": 1,                                                            
    "image_size": [512,512],                                                    
    "transformations": {                                                                                                       
    },                                                                          
    "categorical_encoding":"labelencoder"                                       
}                                                                               
config = Bunch(config)                                                          
pipeline = Funnel(data_path="testdata", config=config, datatype="categorical", training=False)  
pipeline = pipeline.dataset(type="val")                                       
# use pipeline to validate your data on model.
loss = []
for data in pipeline:
    image_batch , actual_label_batch = data[0], data[1]
    # pred_label_batch = model.predict(image_batch)
    # loss.append(calc_loss(actual_label_batch,pred_label_batch))
    print(image_batch,label_batch)                                     

初学者部分

Keras 兼容性

使用keras model.fit来构建非常简单的pipeline。

import tensorflow as tf
from pipe import Funnel
"""
Create a Funnel for the Pipeline!
"""
config = {
    "batch_size": 2,
    "image_size": [100, 100],
    "transformations": {
        "flip_left_right": None,
        "gridmask": None,
        "random_rotate": None,
    },
    "categorical_encoding": "labelencoder",
}
pipeline = Funnel(data_path="testdata", config=config, datatype="categorical")
pipeline = pipeline.dataset(type="train")
# Create Keras model
model = tf.keras.applications.VGG16(
    include_top=True, weights=None,input_shape=(100,100,3),
    pooling=None, classes=2, classifier_activation='sigmoid'
)
# compile
model.compile(loss='mse', optimizer='adam')
# pass pipeline as iterable
model.fit(pipeline , batch_size=2,steps_per_epoch=5,verbose=1)

配置

  • image_size - pipeline的图像尺寸。
  • batch_size - pipeline的Batch size。
  • transformations - 应用数据增强字典中的对应关键字。
  • categorical_encoding - 对类别数据进行编码  - ('labelencoder' , 'onehotencoder').

增强:

GridMask

在输入图像上创建gridmask,并在范围内定义旋转。

参数:

ratio - 空间上的网格比例

fill - 填充值fill value

rotate - 旋转的角度范围

MixUp

使用给定的alpha值,将两个随机采样的图像和标签进行混合。

参数:

alpha - 在混合时使用的值。

RandomErase

在给定的图像上的随机位置擦除一个随机的矩形区域。

参数:

prob - 在图像上进行随机的概率。

CutMix

在给定图像上对另一个随机采样的图像进行随机的缩放,再以完全覆盖的方式贴到这个给定图像上。

params:

prob - 在图像上进行CutMix的概率。

Mosaic

把4张输入图像组成一张马赛克图像。

参数:

prob - 进行Mosaic的概率。

CutMix , CutOut, MixUp

Mosaic

Grid Mask

以上就是Tensorflow高性能数据优化增强工具Pipeline使用详解的详细内容,更多关于Tensorflow数据工具Pipeline的资料请关注编程网其它相关文章!

--结束END--

本文标题: Tensorflow高性能数据优化增强工具Pipeline使用详解

本文链接: https://lsjlt.com/news/120873.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作