返回顶部
首页 > 资讯 > 后端开发 > Python >Python+pytorch实现天气识别
  • 147
分享到

Python+pytorch实现天气识别

2024-04-02 19:04:59 147人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

目录一、前期工作1.设置GPU或者cpu2.导入数据二、数据预处理三、搭建网络四、训练模型1.设置学习率2.模型训练五、模型评估1.Loss和Accuracy图2.对结果进行预测3.

一、前期工作

环境:python3.6,1080ti,PyTorch1.10(实验室服务器的环境)

1.设置GPU或者cpu

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
device

2.导入数据

import os,PIL,random,pathlib
 
data_dir = 'weather_photos/'
data_dir = pathlib.Path(data_dir)
print(data_dir)
 
data_paths = list(data_dir.glob('*'))
print(data_paths)
classeNames = [str(path).split("/")[1] for path in data_paths]
classeNames

二、数据预处理

数据格式设置

total_datadir = 'weather_photos/'
 
# 关于transfORMs.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
 
total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

数据集划分

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

设置dataset

batch_size = 32
 
train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)

检查数据格式 

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

三、搭建网络

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential,ReLU
 
num_classes = 4
 
class Model(nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        # 卷积层
        self.layers = Sequential(
            # 第一层
            nn.Conv2d(3, 24, kernel_size=5),
            nn.BatchNorm2d(24),
            nn.ReLU(),
            # 第二层
            nn.Conv2d(24,64 , kernel_size=5),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
            nn.Conv2d(64, 128, kernel_size=5),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 24, kernel_size=5),
            nn.BatchNorm2d(24),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
            nn.Flatten(),
            nn.Linear(24*50*50, 516,bias=True),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(516, 215,bias=True),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(215, num_classes,bias=True),
        )
 
    def forward(self, x):
 
        x = self.layers(x)
        return x    
 
 
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
 
model = Model().to(device)
model

打印网络结构

四、训练模型

1.设置学习率

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-3 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.模型训练

训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)
 
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches
 
    return train_acc, train_loss

测试函数 

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
 
    test_acc  /= size
    test_loss /= num_batches
 
    return test_acc, test_loss

具体训练代码 

epochs     = 30
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
 
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

五、模型评估

1.Loss和Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
 
epochs_range = range(epochs)
 
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2.对结果进行预测

import os
import JSON
 
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
 
img_path = "weather_photos/cloudy/cloudy1.jpg"
classes = ['cloudy', 'rain', 'shine', 'sunrise']
data_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)
    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()
        print(classes[predict_cla])
    plt.show()
    
if __name__ == '__main__':
    main()

预测结果如下:

3.总结

1.本次能主要对以下函数进行了学习

transforms.Compose针对数据转换,例如尺寸,类型
datasets.ImageFolder结合上面这个对某文件夹下数据处理
torch.utils.data.DataLoader设置dataset

以上就是python+pytorch实现天气识别的详细内容,更多关于Python pytorch天气识别的资料请关注编程网其它相关文章!

--结束END--

本文标题: Python+pytorch实现天气识别

本文链接: https://lsjlt.com/news/120649.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Python+pytorch实现天气识别
    目录一、前期工作1.设置GPU或者cpu2.导入数据二、数据预处理三、搭建网络四、训练模型1.设置学习率2.模型训练五、模型评估1.Loss和Accuracy图2.对结果进行预测3....
    99+
    2024-04-02
  • pytorch实现图像识别(实战)
    目录1. 代码讲解1.1 导库1.2 标准化、transform、设置GPU1.3 预处理数据1.4 建立模型1.5 训练模型1.6 测试模型1.7结果1. 代码讲解 1.1 导库 ...
    99+
    2024-04-02
  • Python实现天气查询软件
    目录一、背景二、工具三、代码解读四、完整代码一、背景 某天下班淋雨成了落汤鸡,发了个朋友圈感慨一下啊,然后...... 夜深人静之时,突然收到了来自学妹的Py文件,运行之后发现事情并...
    99+
    2024-04-02
  • SpringMVC结合天气api实现天气查询
    本实例实现在jsp页面实现查询全国城市天气预报的功能,供大家参考,具体内容如下实例目录:实现效果:具体思路:从和风天气api那里取得具体城市的api接口,获取json数据,再对json数据进行解析。获取json数据:package com....
    99+
    2023-05-31
    springmvc api 天气查询
  • PyTorch怎么实现图像识别
    这篇文章主要介绍“PyTorch怎么实现图像识别”,在日常操作中,相信很多人在PyTorch怎么实现图像识别问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”PyTorch怎么实现图像识别”的疑惑有所帮助!接下来...
    99+
    2023-06-29
  • [Python实战]Python制作天气
    来源:Python高效编程作者:flywind以前,公众号分享了如何使用 PyQt5 制作猜数游戏和计时器,这一次,我们继续学习:如何使用 PyQt5 制作天气查询软件。开发环境Python3PyQt5requests准备工作首先要获取不同...
    99+
    2023-01-31
    实战 天气 Python
  • PyTorch实现图像识别实战指南
    目录概述预处理导包数据读取与预处理数据可视化主体加载参数建立模型设置哪些层需要训练优化器设置训练模块开始训练测试测试网络效果测试训练好的模型测试数据预处理展示预测结果总结 ...
    99+
    2024-04-02
  • Python+PyQt5+MySQL实现天气管理系统
    在本篇博客中,我利用Python语言其编写界面库PyQt5,然后通过连接MySQL数据库,实现了一个简单的天气管理小系统,该系统包含简单的增删查改四个主要功能。本文旨在解析实现的程序,能够让读者快速了解PyQt5图形...
    99+
    2022-05-21
    Python PyQt5 MySQL 天气管理系统
  • python怎么实现播报天气预报
    要实现播报天气预报,可以使用Python的语音合成库,如pyttsx3或gTTS。下面是使用pyttsx3库的示例代码:```pyt...
    99+
    2023-08-31
    python
  • Python怎么实现天气预报系统
    这篇“Python怎么实现天气预报系统”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python怎么实现天气预报系统”文章吧...
    99+
    2023-07-04
  • Python+Pytorch实战之彩色图片识别
    目录一、 前期准备1. 设置GPU2. 导入数据3. 数据可视化二、构建简单的CNN网络三、 训练模型1. 设置超参数2. 编写训练函数3. 编写测试函数4. 正式训练四、 结果可视...
    99+
    2024-04-02
  • Python实战之天气预报系统的实现
    目录前言一、前期准备二、代码展示三、效果展示前言 鼎鼎大名的南方城市长沙很早就入冬了,街上各种大衣,毛衣,棉衣齐齐出动。 这段时间全国各地大风呜呜地吹,很多地方断崖式降温。 虽然前几...
    99+
    2022-12-19
    Python天气预报系统 Python天气预报
  • pytorch实现手写数字图片识别
    本文实例为大家分享了pytorch实现手写数字图片识别的具体代码,供大家参考,具体内容如下 数据集:MNIST数据集,代码中会自动下载,不用自己手动下载。数据集很小,不需要GPU设备...
    99+
    2024-04-02
  • 怎么利用PyTorch实现图像识别
    这篇文章主要介绍“怎么利用PyTorch实现图像识别”,在日常操作中,相信很多人在怎么利用PyTorch实现图像识别问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么利用PyTorch实现图像识别”的疑惑有所...
    99+
    2023-07-05
  • python结合API实现即时天气信息
    python结合API实现即时天气信息 import urllib.request import urllib.parse import json """ 利用“最美天气”抓取即时天气情况 ht...
    99+
    2022-06-04
    天气 信息 python
  • 如何使用python实现定时报天气
    小编给大家分享一下如何使用python实现定时报天气,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一.分析爬取目标这里就不爬取股票的信息,我来爬一个天气预报的信息...
    99+
    2023-06-25
  • Pytorch实现图像识别之数字识别(附详细注释)
    使用了两个卷积层加上两个全连接层实现 本来打算从头手撕的,但是调试太耗时间了,改天有时间在从头写一份 详细过程看代码注释,参考了下一个博主的文章,但是链接没注意关了找不到了,博主看到...
    99+
    2024-04-02
  • pytorch实现mnist手写彩色数字识别
    目录前言一 前期工作1.设置GPU或者cpu2.导入数据二 数据预处理1.加载数据2.可视化数据3.再次检查数据三 搭建网络四 训练模型1.设置学习率2.模型训练五 模型评估1.Lo...
    99+
    2024-04-02
  • python如何实现将天气预报可视化
    这篇文章将为大家详细讲解有关python如何实现将天气预报可视化,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。结果展示其中:红线代表当天最高气温,蓝线代表最低气温,最高气温点上的标注为当天的天气情况。如果...
    99+
    2023-06-22
  • Vue实现天气预报功能
    本文为大家分享了Vue实现天气预报功能的具体代码,供大家参考,具体内容如下 1、功能描述 在搜索框中输入城市,下方出现今天及未来四天的天气情况。搜索框下面固定了几个城市,点击可以快速...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作