Python 官方文档:入门教程 => 点击学习
目录xml_to_csvcsv_to_tfrecordxml_to_csv 代码如下: import os import glob import pandas as pd impor
代码如下:
import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET
def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):
value = (root.find('filename').text,
int(root.find('size')[0].text),
int(root.find('size')[1].text),
member[0].text,
int(member[4][0].text),
int(member[4][1].text),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df
def main():
print(os.getcwd())
# 结果为E:\python_code\crack\models_trainning
# ToDo 根据自己实际目录修改
# image_path = os.path.join(os.getcwd(), 'dataset/crack/test') # 根据自己实际目录修改,或者使用下面的路径
image_path = 'E:/Python_code/crack/models_trainning/dataset/crack/test'
print(image_path)
xml_df = xml_to_csv(image_path)
xml_df.to_csv('./dataset/crack/train/crack_test.csv', index=None) # 根据自己实际目录修改
print('Successfully converted xml to csv.')
main()
这里需要注意的是,这里的话我们只需要修改路径,就不需要在终端运行(每次需要先去该目录下)了,对于不玩linux的同学比较友好。
print(os.getcwd())
结果为E:\python_code\crack\models_trainning
image_path = os.path.join(os.getcwd(), 'dataset/crack/test')
image_path = 'E:/python_code/crack/models_trainning/dataset/crack/test'
以上两种图片路径方法都可以,一个采用的是os.path.join()进行路径拼接。
xml_df.to_csv('./dataset/crack/train/crack_test.csv', index=None)
保存为csv的路径可以随意写
结果如下
# -*- coding: utf-8-*-
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import os
import io
import pandas as pd
import Tensorflow as tf
import tensorflow.compat.v1 as tf
from PIL import Image
from research.object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict
flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS
# 将分类名称转成ID号
def class_text_to_int(row_label):
if row_label == 'crack':
return 1
# elif row_label == 'car':
# return 2
# elif row_label == 'person':
# return 3
# elif row_label == 'kite':
# return 4
else:
print('NONE: ' + row_label)
# None
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path):
print(os.path.join(path, '{}'.fORMat(group.filename)))
with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = (group.filename + '.jpg').encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(csv_input, output_path, imgPath):
writer = tf.python_io.TFRecordWriter(output_path)
path = imgPath
examples = pd.read_csv(csv_input)
grouped = split(examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
writer.close()
print('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == '__main__':
# ToDo 修改相应目录
imgPath = r'E:\python_code\crack\models_trainning\dataset\crack\test'
output_path = 'dataset/crack/test/crack_test.record'
csv_input = 'dataset/crack/test/crack_test.csv'
main(csv_input, output_path, imgPath)
如xml_to_csv类似,只要把路径改好即可
imgPath是图片所在文件夹路径
output_path是tfrecord生成的路径
csv_iinput是使用的csv的路径
当然,你可能会出现下面报错,起初笔者还以为是编码问题,可是始终未能解决。后来仔细检查发现,是自己路径搞错了,因此大家出现这个错误的时候,检查一下路径先。
到此这篇关于Python实现常见数据格式转换的方法详解的文章就介绍到这了,更多相关Python数据格式转换内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
--结束END--
本文标题: Python实现常见数据格式转换的方法详解
本文链接: https://lsjlt.com/news/120617.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0