Python 官方文档:入门教程 => 点击学习
使用drop函数删除dataframe的某列或某行数据: drop(labels, axis=0, level=None, inplace=False, errors='raise'
使用drop函数删除dataframe的某列或某行数据:
drop(labels, axis=0, level=None, inplace=False, errors='raise')
-- axis为0时表示删除行,axis为1时表示删除列
常用参数如下:
import pandas as pd
import numpy as np
data = {'Country':['China','US','Japan','EU','UK/Australia', 'UK/Netherland'],
'Number':[100, 150, 120, 90, 30, 2],
'Value': [1, 2, 3, 4, 5, 6],
'label': list('abcdef')}
df = pd.DataFrame(data)
print("df原数据:\n", df, '\n')
out:
df原数据:
Country Number Value label
0 China 100 1 a
1 US 150 2 b
2 Japan 120 3 c
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
删除单列:
print(df.drop('Country', axis = 1))
out:
Number Value label
0 100 1 a
1 150 2 b
2 120 3 c
3 90 4 d
4 30 5 e
5 2 6 f
删除多列:
print(df.drop(['Country','Number'], axis = 1))
out:
Value label
0 1 a
1 2 b
2 3 c
3 4 d
4 5 e
5 6 f
删除单行:
print(df.drop(labels = 1, axis = 0))
out:
Country Number Value label
0 China 100 1 a
2 Japan 120 3 c
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
删除多行:
print(df.drop(labels = [1,2], axis = 0))
out:
Country Number Value label
0 China 100 1 a
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
使用range函数删除连续多行:
print(df.drop(labels = range(1,3), axis = 0))
out:
Country Number Value label
0 China 100 1 a
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
到此这篇关于pandas dataframe drop函数介绍的文章就介绍到这了,更多相关pandas dataframe drop 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
--结束END--
本文标题: pandas dataframe drop函数介绍
本文链接: https://lsjlt.com/news/120428.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0