返回顶部
首页 > 资讯 > 后端开发 > Python >PythonNumpy教程之排序,搜索和计数详解
  • 514
分享到

PythonNumpy教程之排序,搜索和计数详解

2024-04-02 19:04:59 514人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

目录排序搜索Counting排序 排序是指以特定格式排列数据。排序算法指定以特定顺序排列数据的方式。最常见的顺序是数字或字典顺序。在 Numpy 中,我们可以使用库中提供的各种函数(

排序

排序是指以特定格式排列数据。排序算法指定以特定顺序排列数据的方式。最常见的顺序是数字或字典顺序。在 Numpy 中,我们可以使用库中提供的各种函数(如 sort、lexsort、argsort 等)执行各种排序操作。

numpy.sort(): 此函数返回数组的排序副本。

# 导入库
import numpy as np
 
# 沿第一轴排序
a = np.array([[12, 15], [10, 1]])
arr1 = np.sort(a, axis = 0)        
print ("Along first axis : \n", arr1)        
 
 
# 沿最后一个轴排序
a = np.array([[10, 15], [12, 1]])
arr2 = np.sort(a, axis = -1)        
print ("\nAlong first axis : \n", arr2)
 
 
a = np.array([[12, 15], [10, 1]])
arr1 = np.sort(a, axis = None)        
print ("\nAlong none axis : \n", arr1)

输出 :

Along first axis : 
 [[10  1]
 [12 15]]

Along first axis : 
 [[10 15]
 [ 1 12]]

Along none axis : 
 [ 1 10 12 15]

numpy.argsort(): 此函数返回将对数组进行排序的索引

# 演示 numpy.argsort 工作的 python 代码
import numpy as np
 
# 已创建 Numpy 数组
a = np.array([9, 3, 1, 7, 4, 3, 6])
 
# 未排序的数组打印
print('Original array:\n', a)
 
# 排序数组索引
b = np.argsort(a)
print('Sorted indices of original array->', b)
 
# 要使用排序索引获取排序数组 c 是由与 b 相同的 len 创建的临时数组
c = np.zeros(len(b), dtype = int)
for i in range(0, len(b)):
    c[i]= a[b[i]]
print('Sorted array->', c)

在 IDE 上运行

输出:

Original array:
 [9 3 1 7 4 3 6]
Sorted indices of original array-> [2 1 5 4 6 3 0]
Sorted array-> [1 3 3 4 6 7 9]

numpy.lexsort(): 此函数使用一系列键返回间接稳定排序。

# 演示 numpy.lexsort() 工作的 Python 代码
import numpy as np
 
# numpy数组创建第一列
a = np.array([9, 3, 1, 3, 4, 3, 6])
 
# 第二栏
b = np.array([4, 6, 9, 2, 1, 8, 7]) 
print('column a, column b')
for (i, j) in zip(a, b):
    print(i, ' ', j)
 
# 按 a 然后按 b 排序
ind = np.lexsort((b, a)) 
print('Sorted indices->', ind)

输出 :

column a, column b
9   4
3   6
1   9
3   2
4   1
3   8
6   7
Sorted indices-> [2 3 1 5 4 6 0]

功能描述
numpy.ndarray.sort()就地对数组进行排序。
numpy.msort()返回沿第一个轴排序的数组的副本。
numpy.sort_complex()首先使用实部对复数数组进行排序,然后使用虚部。
numpy.partition()返回数组的分区副本。
numpy.argpartition()使用 kind 关键字指定的算法沿给定轴执行间接分区。

搜索

搜索是一种操作或技术,可帮助查找给定元素或值在列表中的位置。根据是否找到正在搜索的元素,任何搜索都被称为成功或不成功。在 Numpy 中,我们可以使用库中提供的各种函数(如 argmax、argmin、nanaargmax 等)执行各种搜索操作。

numpy.argmax(): 此函数返回特定轴中数组的最大元素的索引。

# 说明 argmax() 工作的 Python 程序
 
import numpy as geek 
 
# 处理二维数组
array = geek.arange(12).reshape(3, 4)
print("INPUT ARRAY : \n", array)
 
# 没有提到轴,所以适用于整个阵列
print("\nMax element : ", geek.argmax(array))
 
# 根据索引返回最大元素的索引
print(("\nIndices of Max element : "
      , geek.argmax(array, axis=0)))
print(("\nIndices of Max element : "
      , geek.argmax(array, axis=1)))

输出 :

INPUT ARRAY : 
 [[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]

Max element :  11

Indices of Max element :  [2 2 2 2]

Indices of Max element :  [3 3 3]

numpy.nanargmax(): 此函数返回忽略 NaN 的特定轴中数组的最大元素的索引。如果切片仅包含 NaN 和 Infs,则结果不可信。

# 说明 nanargmax() 工作的 Python 程序
 
import numpy as geek 
 
# 处理一维数组
array = [geek.nan, 4, 2, 3, 1]
print("INPUT ARRAY 1 : \n", array)
 
array2 = geek.array([[geek.nan, 4], [1, 3]])
 
# 根据忽略 NaN 的索引返回最大元素的索引
print(("\nIndices of max in array1 : "
       , geek.nanargmax(array)))
 
# 处理二维数组
print("\nINPUT ARRAY 2 : \n", array2)
print(("\nIndices of max in array2 : "
      , geek.nanargmax(array2)))
 
print(("\nIndices at axis 1 of array2 : "
      , geek.nanargmax(array2, axis = 1)))

输出 :

INPUT ARRAY 1 : 
 [nan, 4, 2, 3, 1]

Indices of max in array1 :  1

INPUT ARRAY 2 : 
 [[ nan   4.]
 [  1.   3.]]

Indices of max in array2 :  1

Indices at axis 1 of array2 :  [1 1]

numpy.argmin(): 此函数返回沿轴的最小值的索引。

# 说明 argmin() 工作的 Python 程序
 
import numpy as geek 
 
# 处理一维数组
array = geek.arange(8)
print("INPUT ARRAY : \n", array)
 
 
# 根据索引返回 min 元素的索引
print("\nIndices of min element : ", geek.argmin(array, axis=0))

在 IDE 上运行

输出 :

INPUT ARRAY : 
 [0 1 2 3 4 5 6 7]

Indices of min element :  0

功能描述
numpy.nanargmin()返回指定轴中最小值的索引,忽略 NaN。
numpy.argwhere()查找按元素分组的非零数组元素的索引。
numpy.nonzero()返回非零元素的索引。
numpy.flatnonzero()在 a 的扁平化版本中返回非零索引。
numpy.where()根据条件返回从 x 或 y 中选择的元素。
numpy.searchsorted()查找应插入元素以保持顺序的索引。
numpy.extract()返回满足某个条件的数组元素。

Counting

numpy.count_nonzero() :计算数组中非零值的数量。

# 说明 count_nonzero() 工作的 Python 程序
 
import numpy as np
  
# 计算多个非零值
a = np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]])
b = np.count_nonzero(([[0,1,7,0,0],[3,0,0,2,19]]
                     , axis=0))
 
print("Number of nonzero values is :",a)
print("Number of nonzero values is :",b)

在 IDE 上运行

输出 :

Number of nonzero values is : 5
Number of nonzero values is : [1, 1, 1, 1, 1]

到此这篇关于Python Numpy教程之排序,搜索和计数详解的文章就介绍到这了,更多相关Python Numpy内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: PythonNumpy教程之排序,搜索和计数详解

本文链接: https://lsjlt.com/news/120239.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • PythonNumpy教程之排序,搜索和计数详解
    目录排序搜索Counting排序 排序是指以特定格式排列数据。排序算法指定以特定顺序排列数据的方式。最常见的顺序是数字或字典顺序。在 Numpy 中,我们可以使用库中提供的各种函数(...
    99+
    2024-04-02
  • PythonNumPy教程之遍历数组详解
    NumPy 包包含一个迭代器对象numpy.nditer。它是一个高效的多维迭代器对象,使用它可以迭代数组。使用 Python 的标准迭代器接口访问数组的每个元素。 # 用于遍历数组...
    99+
    2024-04-02
  • JAVA十大排序算法之计数排序详解
    目录计数排序问题代码实现时间复杂度算法稳定性总结计数排序 一种非比较排序。计数排序对一定范围内的整数排序时候的速度非常快,一般快于其他排序算法。但计数排序局限性比较大,只限于对整数进...
    99+
    2024-04-02
  • Java桶排序之基数排序详解
    基数排序也是桶排序的一种,也是跟样本数据强相关的,且基数排序要求样本数据是非负的十进制数,如果有小数或者负数,那么代码将要大量重写!这就是不基于比较的排序的弊端。一般来说,我们认为基...
    99+
    2024-04-02
  • Python NumPy教程之索引详解
    目录为什么我们需要 NumPy 使用索引数组进行索引索引类型基本切片和索引高级索引NumPy 或 Numeric Python 是一个用于计算同质 n 维数组的包。在 nu...
    99+
    2024-04-02
  • JAVA十大排序算法之基数排序详解
    目录基数排序代码实现时间复杂度算法稳定性基数排序 vs 桶排序 vs 计数排序总结基数排序 常见的数据元素一般是由若干位组成的,比如字符串由若干字符组成,整数由若干位0~9数字组成。...
    99+
    2024-04-02
  • python数组排序方法之sort、sorted和argsort详解
    目录引言sort 和 sorted 的区别如下用法实例1.升序排序2.降序排序3.如果不想要排序后的值,想要排序后的索引,可以这样做4.字符串类型排序5.二维数组排序6.二维数组获取...
    99+
    2024-04-02
  • Java数据结构之二叉搜索树详解
    目录前言性质实现节点结构初始化插入节点查找节点删除节点最后前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不...
    99+
    2024-04-02
  • MySQL基础教程10 —— 函数之全文搜索功能
    语法:  MATCH (col1,col2,...) AGAINST (expr [IN BOOLEAN MODE | WITH QUERY EXPANSION]) MySQL支持全文索引和搜索功能。MySQL中...
    99+
    2022-05-31
    MySQL 全文搜索
  • 详解Java sort()数组排序(升序和降序)
    在Java中,使用sort()方法可以对数组进行排序,sort()方法有两个重载的版本:一个对基本数据类型数组进行排序,一个对对象数...
    99+
    2023-08-15
    Java
  • Python中的容器和数组如何进行高效的搜索和排序?
    Python是一种高级编程语言,它支持多种数据结构和容器,例如列表、元组、集合和字典等。这些容器和数组在Python编程中起着至关重要的作用。搜索和排序是常见的操作,因此在本文中我们将讨论如何在Python中高效地进行搜索和排序。 容器和...
    99+
    2023-06-13
    关键字 容器 数组
  • Stream流排序数组和List 详解
    目录一、对象单字段排序二、多字段排序三、数组排序以及List<Integer>排序一、对象单字段排序 List<People> peopleL...
    99+
    2024-04-02
  • Python NumPy教程之二元计算详解
    二元运算符作用于位,进行逐位运算。二元运算只是组合两个值以创建新值的规则。 numpy.bitwise_and(): 此函数用于计算两个数组元素的按位与。 此函数计算输入数组中整数的...
    99+
    2024-04-02
  • Android程序设计之AIDL实例详解
    通常来说,AIDL这项技术在我们的应用开发过程中并不是很常用,虽然新浪微博提供了SSO登录,但是其原理就是使用AIDL。本文就以完整的实例形式讲述了AIDL的原理及实现方法。 ...
    99+
    2022-06-06
    aidl Android
  • 小程序开发之云函数的使用教程详解
    目录1、云函数1.1 云函数API和云函数创建2、云函数案例1、云函数 云函数是部署在云端的函数,他和小程序本地的函数存在很大的区别,云函数应用涉及云端云函数定义和本地引用云端云函数...
    99+
    2024-04-02
  • C语言数据结构之堆排序详解
    目录1.堆的概念及结构2.堆的实现2.1 堆的向下调整算法2.2 堆的向上调整算法2.3 建堆(数组)2.4 堆排序2.5 堆排序的时间复杂度1.堆的概念及结构 如果有一个关键码的集...
    99+
    2024-04-02
  • Go数据结构之堆排序示例详解
    目录堆排序堆排序过程动画显示开始堆排序代码实现总结堆排序 堆排序是一种树形选择排序算法。 简单选择排序算法每次选择一个关键字最小的记录需要 O(n) 的时间,而堆排序选择一个关键字最...
    99+
    2024-04-02
  • C++数据结构之二叉搜索树的实现详解
    目录前言介绍实现节点的实现二叉搜索树的查找二叉搜索树的插入二叉搜索树的删除总结前言 今天我们来学一个新的数据结构:二叉搜索树。 介绍 二叉搜索树也称作二叉排序树,它具有以下性质: 非...
    99+
    2024-04-02
  • Java数据结构之图的两种搜索算法详解
    目录前言深度优先搜索算法API设计代码实现广度优先搜素算法API设计代码实现案例应用前言 在很多情况下,我们需要遍历图,得到图的一些性质,例如,找出图中与指定的顶点相连的所有顶点,或...
    99+
    2022-11-13
    Java数据结构 图搜索 Java 图 搜索算法 Java 数据结构 图
  • C++STL函数和排序算法的快排以及归并排序详解
    目录一、队列是什么?二、排序算法1.快速排序2、归并排序总结一、队列是什么? 头文件queue主要包括循环队列queue和优先队列priority_queue两个容器。 像栈一样,队...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作