Python 官方文档:入门教程 => 点击学习
目录输入:课本中的标准差计算公式:Numpy中的std计算:Torch中的std计算:附:贝塞尔校正总结:输入: [1.0000, -1.0000, 3.0000] 课本中的标准差计
[1.0000, -1.0000, 3.0000]
按照上述公式计算:
import numpy as np
tm = np.array([1.0000, -1.0000, 3.0000])
DDD = np.std(tm)
print(ddd)
1.632993161855452
可以看出Numpy中的计算结果与课本中的公式计算出来的结果是一致的。
tm = torch.tensor([1.0000, -1.0000, 3.0000])
ddd = torch.std(tm)
print(ddd)
tensor(2.)
计算出来的结果是2,与Numpy中的计算结果是不相同的。
查看torch.std的参数:
torch.std默认设置了unbiased=True。此时计算标准差的公式则使用贝塞尔校正 的方法:
可以看出贝塞尔校正的标准差最后除以n - 1。
可以看出确实计算出来的结果是2.
至于为何使用n-1,这里不做过多介绍,建议参考:贝塞尔校正。
贝塞尔校正,指的是样本方差前面的系数1/n-1
这就是这个系数的原理
注:设置torch.std中的unbiased=False,则与Numpy中的std的结果相同的。
Numpy中的std计算与课本中的计算方式相同,都是除的是样本数量n。
Torch中的std计算默认使用的是unbiased=True即贝塞尔校正,除的是样本数量n-1。
--结束END--
本文标题: Python计算标准差之numpy.std和torch.std的区别
本文链接: https://lsjlt.com/news/120130.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0