返回顶部
首页 > 资讯 > 后端开发 > Python >Python计算标准差之numpy.std和torch.std的区别
  • 714
分享到

Python计算标准差之numpy.std和torch.std的区别

2024-04-02 19:04:59 714人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

目录输入:课本中的标准差计算公式:Numpy中的std计算:Torch中的std计算:附:贝塞尔校正总结:输入: [1.0000, -1.0000, 3.0000] 课本中的标准差计

输入:

[1.0000, -1.0000, 3.0000]

课本中的标准差计算公式:

按照上述公式计算:

Numpy中的std计算:

import numpy as np

tm = np.array([1.0000, -1.0000, 3.0000])
DDD = np.std(tm)
print(ddd)

1.632993161855452

可以看出Numpy中的计算结果与课本中的公式计算出来的结果是一致的。

Torch中的std计算:

tm = torch.tensor([1.0000, -1.0000, 3.0000])
ddd = torch.std(tm)
print(ddd)

tensor(2.)

计算出来的结果是2,与Numpy中的计算结果是不相同的。

查看torch.std的参数:

torch.std默认设置了unbiased=True。此时计算标准差的公式则使用贝塞尔校正 的方法:

可以看出贝塞尔校正的标准差最后除以n - 1。

可以看出确实计算出来的结果是2.

至于为何使用n-1,这里不做过多介绍,建议参考:贝塞尔校正。

附:贝塞尔校正

贝塞尔校正,指的是样本方差前面的系数1/n-1

这就是这个系数的原理

注:设置torch.std中的unbiased=False,则与Numpy中的std的结果相同的。

总结:

Numpy中的std计算与课本中的计算方式相同,都是除的是样本数量n。

Torch中的std计算默认使用的是unbiased=True即贝塞尔校正,除的是样本数量n-1。

--结束END--

本文标题: Python计算标准差之numpy.std和torch.std的区别

本文链接: https://lsjlt.com/news/120130.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作