返回顶部
首页 > 资讯 > 后端开发 > Python >python 文件读写和数据清洗
  • 855
分享到

python 文件读写和数据清洗

2024-04-02 19:04:59 855人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

目录一、文件操作1.1 csv文件读写1.2 excel文件读写二、数据清洗2.1 删除空值2.2 删除不需要的列2.3 删除不需要的行2.4 重置索引2.5 统计缺失2.6 排序一

一、文件操作

  • pandas内置了10多种数据源读取函数,常见的就是CSV和EXCEL
  • 使用read_csv方法读取,结果为dataframe格式
  • 在读取csv文件时,文件名称尽量是英文
  • 读取csv时,注意编码,常用编码为utf-8、gbk 、gbk2312和gb18030等
  • 使用to_csv方法快速保存

1.1 csv文件读写

#读取文件,以下两种方式:
#使用pandas读入需要处理的表格及sheet页
import pandas as pd
df = pd.read_csv("test.csv",sheet_name='sheet1') #默认是utf-8编码
#或者使用with关键字
with open("test.csv",encoding="utf-8")as df: 
    #按行遍历
    for row in df:
        #修正
        row = row.replace('阴性','0').replace('00.','0.')
        ...
        print(row)

#将处理后的结果写入新表
#建议用utf-8编码或者中文gbk编码,默认是utf-8编码,index=False表示不写出行索引
df.to_csv('df_new.csv',encoding='utf-8',index=False) 

1.2 excel文件读写

#读入需要处理的表格及sheet页
df = pd.read_excel('测试.xlsx',sheet_name='test')  
df = pd.read_excel(r'测试.xlsx') #默认读入第一个sheet

#将处理后的结果写入新表
df1.to_excel('处理后的数据.xlsx',index=False)

二、数据清洗

2.1 删除空值

# 删除空值行
# 使用索引
df.dropna(axis=0,how='all')#删除全部值为空的行
df_1 = df[df['价格'].notna()] #删除某一列值为空的行
df = df.dropna(axis=0,how='all',subset=['1','2','3','4','5'])# 这5列值均为空,删除整行
df = df.dropna(axis=0,how='any',subset=['1','2','3','4','5'])#这5列值任何出现一个空,即删除整行

2.2 删除不需要的列

# 使用del, 一次只能删除一列,不能一次删除多列 
del df['sample_1']  #修改源文件,且一次只能删除一个
del df[['sample_1', 'sample_2']]  #报错

#使用drop,有两种方法:
#使用列名
df = df.drop(['sample_1', 'sample_2'], axis=1) # axis=1 表示删除列
df.drop(['sample_1', 'sample_2'], axis=1, inplace=True) # inplace=True, 直接从内部删除
#使用索引
df.drop(df.columns[[0, 1, 2]], axis=1, inplace=True) # df.columns[ ] #直接使用索引查找列,删除前3列

2.3 删除不需要的行

#使用drop,有两种方法:
#使用行名
df = df.drop(['行名1', '行名2']) # 默认axis=0 表示删除行
df.drop(['行名1', '行名2'], inplace=True) # inplace=True, 直接从内部删除
#使用索引
df.drop(df.index[[1, 3, 5]]) # df.index[ ]直接使用索引查找行,删除1,3,5行
df = df[df.index % 2 == 0]#删除偶数行

2.4 重置索引

#在删除了行列数据后,造成索引混乱,可通过 reset_index重新生成连续索引
df.reset_index()#获得新的index,原来的index变成数据列,保留下来
df.reset_index(drop=True)#不想保留原来的index,使用参数 drop=True,默认 False
df.reset_index(drop=True,inplace=True)#修改源文件
#使用某一列作为索引
df.set_index('column_name').head()

2.5 统计缺失

#每列的缺失数量
df.isnull().sum()
#每列缺失占比
df3.isnull().sum()/df.shape[0]
#每行的缺失数量
df3.isnull().sum(axis=1)
#每行缺失占比
df3.isnull().sum(axis=1)/df.shape[1]

2.6 排序

#按每行缺失值进行降序排序
df3.isnull().sum(axis=1).sort_values(ascending=False)
#按每列缺失率进行降序排序
(df.isnull().sum()/df.isnull().count()).sort_values(ascending=False)

到此这篇关于python 文件读写和数据清洗的文章就介绍到这了,更多相关Python数据处理内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: python 文件读写和数据清洗

本文链接: https://lsjlt.com/news/120123.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • python 文件读写和数据清洗
    目录一、文件操作1.1 csv文件读写1.2 excel文件读写二、数据清洗2.1 删除空值2.2 删除不需要的列2.3 删除不需要的行2.4 重置索引2.5 统计缺失2.6 排序一...
    99+
    2024-04-02
  • 如何用python清洗文件中的数据
    目录简单版使用filter读取utf-8带bom的文件多文件清洗清洗数据同时记录订单号并排序清洗sql文件,将数据表名放入excel中总结简单版 直接打开日志文件,往另外一个文件中按照要过滤的要求进行过滤 im...
    99+
    2022-06-02
    python 数据清洗
  • Python数据读写之Python读写CSV文件
    目录1. 读取CSV文件 csv.reader()2. 写入CSV文件1. 读取CSV文件 csv.reader() 该方法的作用相当于就是通过 ',' 分割csv格...
    99+
    2024-04-02
  • python如何清洗数据
    在Python中,可以使用各种库和工具来清洗数据。下面是一些常用的方法:1. 数据去重:使用pandas库的`drop_d...
    99+
    2023-09-12
    python
  • 使用Python怎么清洗数据
    今天就跟大家聊聊有关使用Python怎么清洗数据,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。下面我们用一副待清洗的扑克牌作为示例,假设它保存在代码文件相同的目录下,在 Jupyte...
    99+
    2023-06-16
  • Python如何实现数据清洗
    小编给大家分享一下Python如何实现数据清洗,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!数据清洗小工具箱在下面的代码片段中,数据清洗代码被封装在了一些函数中,代码的目的十分直观。你可以直接使用这些代码,无需将它们嵌入到...
    99+
    2023-06-28
  • Python怎么实现数据清洗
    本文小编为大家详细介绍“Python怎么实现数据清洗”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python怎么实现数据清洗”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。这里数据清洗需要用到的库是pandas...
    99+
    2023-07-06
  • Python读取和写入文件
    #Read and Write from Files##coding=utf-8import codecsf = open("AccountList.txt","w")L = u"张三\n李四\n王五\n赵六"f.write(L)f.clo...
    99+
    2023-01-31
    文件 Python
  • python文件读写(open参数,文件
    1.基本方法 文件读写调用open函数打开一个文件描述符(描述符的个数在操作系统是定义好的) python3情况下读写文件: f = open('py3.txt','wt',encoding='utf-8') f.write(...
    99+
    2023-01-31
    文件 参数 python
  • 如何用Python进行数据清洗
    这篇文章主要介绍“如何用Python进行数据清洗”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“如何用Python进行数据清洗”文章能帮助大家解决问题。 数据清洗是...
    99+
    2024-04-02
  • Flume怎么转换和清洗数据
    Flume是一个分布式、可靠、高可用的海量日志采集、聚合和传输的系统,它可以帮助用户方便地收集、处理和传输大规模数据。在Flume中...
    99+
    2024-04-02
  • python-yml文件读写与xml文件读写
    目录一、python-yml文件读写更新yml的数值二、python-xml文件读写寻找 XML 节点修改 XML 数据建立 XML 结构XPath 搜索XML 排版一、python...
    99+
    2024-04-02
  • Python如何实现Excel数据的探索和清洗
    这篇文章主要介绍了Python如何实现Excel数据的探索和清洗,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。python是什么意思Python是一种跨平台的、具有解释性、编...
    99+
    2023-06-14
  • 如何在Python中进行数据清洗和处理
    如何在Python中进行数据清洗和处理数据清洗和处理是数据分析和挖掘过程中非常重要的一步。清洗和处理数据可以帮助我们发现数据中的问题、缺失或异常,并且为后续的数据分析和建模提供准备。本文将介绍如何使用Python进行数据清洗和处理,并提供具...
    99+
    2023-10-22
    Python编程(Python programming) 数据清洗(Data Cleaning) 数据处理(Data P
  • Python文件读写
    python文件读写 读写文件是最常见的IO操作。Python内置了读写文件的函数,用法和C是兼容的。 读写文件前,我们先必须了解一下,在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘,所以,读写...
    99+
    2023-01-31
    文件 Python
  • python读写文件
    python 文件操作 本文系海特网编程技术斑竹Cute所发表,版权归海特网与Cute所有,转载请保留完整信息 #打开文件和进行写操作 f=open('test.txt','w') f.write('hello')&...
    99+
    2023-01-31
    文件 python
  • 怎么使用Python进行数据清洗
    这篇文章主要讲解了“怎么使用Python进行数据清洗”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Python进行数据清洗”吧!缺失值当数据集中包含缺失数据时,在填充之前可以先进行一...
    99+
    2023-07-06
  • Teradata如何应对数据质量和数据清洗
    Teradata数据管理和分析解决方案提供商,为数据质量和数据清洗提供了一系列解决方案。以下是一些Teradata如何应对数据质量和...
    99+
    2024-04-09
    Teradata
  • Python读写yaml文件
    目录1.关于yaml2.yaml数据结构3.yaml文件格式1.关于yaml yaml基本语法规则: 大小写敏感使用缩进表示层级关系缩进时不允许使用Tab键,只允许使用空格。缩进的空...
    99+
    2024-04-02
  • python之读写文件
    在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘,所以,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后通过操作系统提供的接口从这个文件对象中读取数据(读文件),或者把数据写入这个文件...
    99+
    2023-01-30
    文件 python
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作