Python 官方文档:入门教程 => 点击学习
本文实例为大家分享了OpenCV实现图片亮度增强或减弱的具体代码,供大家参考,具体内容如下 对每个像素点的三通道值进行同步放大,同时保持通道值在0-255之间 将图像中的像素限制在最
本文实例为大家分享了OpenCV实现图片亮度增强或减弱的具体代码,供大家参考,具体内容如下
对每个像素点的三通道值进行同步放大,同时保持通道值在0-255之间
将图像中的像素限制在最小值和最大值之间,超过此区间的值赋值为最小值或最大值
图片亮度增强
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('1.png', 1)
height, width = img.shape[:2]
dst = np.zeros((height, width, 3), np.uint8)
for i in range(0, height):
for j in range(0, width):
(b, g, r) = img[i, j]
bb = int(b) + 50
gg = int(g) + 50
rr = int(r) + 50
if bb > 255:
bb = 255
if gg > 255:
gg = 255
if rr > 255:
rr = 255
dst[i, j] = (bb, gg, rr)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(14, 6), dpi=100) # 设置绘图区域的大小和像素
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(dst)
plt.show()
运行结果:
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('1.png', 1)
height, width = img.shape[:2]
dst = np.zeros((height, width, 3), np.uint8)
for i in range(0, height):
for j in range(0, width):
(b, g, r) = img[i, j]
bb = int(b * 1.3) + 10
gg = int(g * 1.2) + 15
if bb > 255:
bb = 255
if gg > 255:
gg = 255
dst[i, j] = (bb, gg, r)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(14, 6), dpi=100) # 设置绘图区域的大小和像素
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(dst)
plt.show()
运行结果:
图片亮度减弱
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('1.png', 1)
height, width = img.shape[:2]
dst = np.zeros((height, width, 3), np.uint8)
for i in range(0, height):
for j in range(0, width):
(b, g, r) = img[i, j]
bb = int(b) - 50
gg = int(g) - 50
rr = int(r) - 50
if bb < 0:
bb = 0
if gg < 0:
gg = 0
if rr < 0:
rr = 0
dst[i, j] = (bb, gg, rr)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(14, 6), dpi=100) # 设置绘图区域的大小和像素
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(dst)
plt.show()
运行结果:
--结束END--
本文标题: OpenCV实现图片亮度增强或减弱
本文链接: https://lsjlt.com/news/119779.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0