返回顶部
首页 > 资讯 > 后端开发 > Python >Pytorch实现LSTM案例总结学习
  • 633
分享到

Pytorch实现LSTM案例总结学习

2024-04-02 19:04:59 633人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

目录前言模型构建部分主要工作1、构建网络层、前向传播forward()2、实例化网络,定义损失函数和优化器3、训练模型、反向传播backward()4、测试模型前言 关键步骤主要分为

前言

关键步骤主要分为数据准备和模型构建两大部分,其中,

数据准备主要工作:

  • 1、训练集和测试集的划分
  • 2、训练数据的归一化
  • 3、规范输入数据的格式

模型构建部分主要工作

1、构建网络层、前向传播forward()

class LSTM(nn.Module):#注意Module首字母需要大写
    def __init__(self, input_size=1, hidden_layer_size=100, output_size=1):
        super().__init__()
        self.hidden_layer_size = hidden_layer_size

        # 创建LSTM层和linear层,LSTM层提取特征,linear层用作最后的预测
        # LSTM算法接受三个输入:先前的隐藏状态,先前的单元状态和当前输入。
        self.lstm = nn.LSTM(input_size, hidden_layer_size)
        self.linear = nn.Linear(hidden_layer_size, output_size)

        #初始化隐含状态及细胞状态C,hidden_cell变量包含先前的隐藏状态和单元状态
        self.hidden_cell = (torch.zeros(1, 1, self.hidden_layer_size),
                            torch.zeros(1, 1, self.hidden_layer_size))
                            # 为什么的第二个参数也是1
                            # 第二个参数代表的应该是batch_size吧
                            # 是因为之前对数据已经进行过切分了吗?????

    def forward(self, input_seq):
    	#lstm的输出是当前时间步的隐藏状态ht和单元状态ct以及输出lstm_out
        lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq), 1, -1), self.hidden_cell)
        #按照lstm的格式修改input_seq的形状,作为linear层的输入
        predictions = self.linear(lstm_out.view(len(input_seq), -1))
        #返回predictions的最后一个元素
        return predictions[-1]

定义好每层之后,最后还需要通过前向传播的方式把这些串起来,这就涉及如何定义forward函数。

forward函数的任务需要把输入层、网络层、输出层链接起来,实现信息的前向传导。

forward该函数的参数一般为输入数据,返回值是输出数据。

2、实例化网络,定义损失函数和优化器

#创建LSTM()类的对象,定义损失函数和优化器
model = LSTM()
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)#建立优化器实例
print(model)

3、训练模型、反向传播backward()

epochs = 150
for i in range(epochs):
    for seq, labels in train_inout_seq:
        #清除网络先前的梯度值
        optimizer.zero_grad()
        #初始化隐藏层数据
        model.hidden_cell = (torch.zeros(1, 1, model.hidden_layer_size),
                             torch.zeros(1, 1, model.hidden_layer_size))
        #实例化模型
        y_pred = model(seq)
        
        #计算损失,反向传播梯度以及更新模型参数
        #训练过程中,正向传播生成网络的输出,计算输出和实际值之间的损失值
        single_loss = loss_function(y_pred, labels)
        single_loss.backward()#调用backward()自动生成梯度
        optimizer.step()#使用optimizer.step()执行优化器,把梯度传播回每个网络

    # 查看模型训练的结果
    if i%25 == 1:
        print(f'epoch:{i:3} loss:{single_loss.item():10.8f}')
print(f'epoch:{i:3} loss:{single_loss.item():10.10f}')

训练模型时需要使模型处于训练模式,即调用model.train()。

缺省情况下梯度是累加的,需要手工把梯度初始化或者清零,调用optimizer.zero_grad()。

在训练过程中正向传播生成网络的输出,计算输出与实际值之间的损失值。调用loss.backward()自动生成反向传播梯度,然后使用optimizer.step()执行优化器,把梯度传播回每个网络。

实现梯度反向传播的方法主要是复合函数的链式法则。PyTorch提供了自动反向传播的功能,使用nn工具箱,无需自己编写反向传播,直接让损失函数调用backward()即可。

反向传播中,优化器十分重要,这类优化算法通过使用参数的梯度值更新参数。

4、测试模型

fut_pred = 12
test_inputs = train_data_nORMalized[-train_window:].tolist()#首先打印出数据列表的最后12个值
print(test_inputs)

#更改模型为测试或者验证模式
model.eval()#把training属性设置为false,使模型处于测试或验证状态
for i in range(fut_pred):
    seq = torch.FloatTensor(test_inputs[-train_window:])
    with torch.no_grad():
        model.hidden = (torch.zeros(1, 1, model.hidden_layer_size),
                        torch.zeros(1, 1, model.hidden_layer_size))
        test_inputs.append(model(seq).item())
#打印最后的12个预测值
print(test_inputs[fut_pred:])
#由于对训练集数据进行了标准化,因此预测数据也是标准化了的
#需要将归一化的预测值转换为实际的预测值。通过inverse_transform实现
actual_predictions = scaler.inverse_transform(np.array(test_inputs[train_window:]).reshape(-1, 1))
print(actual_predictions)

全部代码如下:

import torch
import torch.nn as nn
import torch.nn.functional	
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
"""
导入数据
"""
flight_data = sns.load_dataset("flights")
print(flight_data.head())
print(flight_data.shape)

#绘制每月乘客的出行频率
fig_size = plt.rcParams['figure.figsize']
fig_size[0] = 15
fig_size[1] = 5
plt.rcParams['figure.figsize'] = fig_size
plt.title('Month vs Passenger')
plt.ylabel('Total Passengers')
plt.xlabel('Months')
plt.grid(True)
plt.autoscale(axis='x',tight=True)
plt.plot(flight_data['passengers'])
plt.show()

"""
数据预处理
"""
flight_data.columns#显示数据集中 列的数据类型
all_data = flight_data['passengers'].values.astype(float)#将passengers列的数据类型改为float
#划分测试集和训练集
test_data_size = 12
train_data = all_data[:-test_data_size]#除了最后12个数据,其他全取
test_data = all_data[-test_data_size:]#取最后12个数据
print(len(train_data))
print(len(test_data))

#最大最小缩放器进行归一化,减小误差,注意,数据标准化只应用于训练数据而不应用于测试数据
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(-1, 1))
train_data_normalized = scaler.fit_transform(train_data.reshape(-1, 1))
#查看归一化之后的前5条数据和后5条数据
print(train_data_normalized[:5])
print(train_data_normalized[-5:])
#将数据集转换为tensor,因为PyTorch模型是使用tensor进行训练的,并将训练数据转换为输入序列和相应的标签
train_data_normalized = torch.FloatTensor(train_data_normalized).view(-1)
#view相当于numpy中的resize,参数代表数组不同维的维度;
#参数为-1表示,这个维的维度由机器自行推断,如果没有-1,那么view中的所有参数就要和tensor中的元素总个数一致

#定义create_inout_sequences函数,接收原始输入数据,并返回一个元组列表。
def create_inout_sequences(input_data, tw):
    inout_seq = []
    L = len(input_data)
    for i in range(L-tw):
        train_seq = input_data[i:i+tw]
        train_label = input_data[i+tw:i+tw+1]#预测time_step之后的第一个数值
        inout_seq.append((train_seq, train_label))#inout_seq内的数据不断更新,但是总量只有tw+1个
    return inout_seq
train_window = 12#设置训练输入的序列长度为12,类似于time_step = 12
train_inout_seq = create_inout_sequences(train_data_normalized, train_window)
print(train_inout_seq[:5])#产看数据集改造结果
"""
注意:
create_inout_sequences返回的元组列表由一个个序列组成,
每一个序列有13个数据,分别是设置的12个数据(train_window)+ 第13个数据(label)
第一个序列由前12个数据组成,第13个数据是第一个序列的标签。
同样,第二个序列从第二个数据开始,到第13个数据结束,而第14个数据是第二个序列的标签,依此类推。
"""

"""
创建LSTM模型
参数说明:
1、input_size:对应的及特征数量,此案例中为1,即passengers
2、output_size:预测变量的个数,及数据标签的个数
2、hidden_layer_size:隐藏层的特征数,也就是隐藏层的神经元个数
"""
class LSTM(nn.Module):#注意Module首字母需要大写
    def __init__(self, input_size=1, hidden_layer_size=100, output_size=1):
        super().__init__()
        self.hidden_layer_size = hidden_layer_size

        # 创建LSTM层和linear层,LSTM层提取特征,linear层用作最后的预测
        ##LSTM算法接受三个输入:先前的隐藏状态,先前的单元状态和当前输入。
        self.lstm = nn.LSTM(input_size, hidden_layer_size)
        self.linear = nn.Linear(hidden_layer_size, output_size)

        #初始化隐含状态及细胞状态C,hidden_cell变量包含先前的隐藏状态和单元状态
        self.hidden_cell = (torch.zeros(1, 1, self.hidden_layer_size),
                            torch.zeros(1, 1, self.hidden_layer_size))
                            # 为什么的第二个参数也是1
                            # 第二个参数代表的应该是batch_size吧
                            # 是因为之前对数据已经进行过切分了吗?????

    def forward(self, input_seq):
        lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq), 1, -1), self.hidden_cell)
        #lstm的输出是当前时间步的隐藏状态ht和单元状态ct以及输出lstm_out
        #按照lstm的格式修改input_seq的形状,作为linear层的输入
        predictions = self.linear(lstm_out.view(len(input_seq), -1))
        return predictions[-1]#返回predictions的最后一个元素
"""
forward方法:LSTM层的输入与输出:out, (ht,Ct)=lstm(input,(h0,C0)),其中
一、输入格式:lstm(input,(h0, C0))
1、input为(seq_len,batch,input_size)格式的tensor,seq_len即为time_step
2、h0为(num_layers * num_directions, batch, hidden_size)格式的tensor,隐藏状态的初始状态
3、C0为(seq_len, batch, input_size)格式的tensor,细胞初始状态
二、输出格式:output,(ht,Ct)
1、output为(seq_len, batch, num_directions*hidden_size)格式的tensor,包含输出特征h_t(源于LSTM每个t的最后一层)
2、ht为(num_layers * num_directions, batch, hidden_size)格式的tensor,
3、Ct为(num_layers * num_directions, batch, hidden_size)格式的tensor,
"""

#创建LSTM()类的对象,定义损失函数和优化器
model = LSTM()
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)#建立优化器实例
print(model)

"""
模型训练
batch-size是指1次迭代所使用的样本量;
epoch是指把所有训练数据完整的过一遍;
由于默认情况下权重是在PyTorch神经网络中随机初始化的,因此可能会获得不同的值。
"""
epochs = 150
for i in range(epochs):
    for seq, labels in train_inout_seq:
        #清除网络先前的梯度值
        optimizer.zero_grad()#训练模型时需要使模型处于训练模式,即调用model.train()。缺省情况下梯度是累加的,需要手工把梯度初始化或者清零,调用optimizer.zero_grad()
        #初始化隐藏层数据
        model.hidden_cell = (torch.zeros(1, 1, model.hidden_layer_size),
                             torch.zeros(1, 1, model.hidden_layer_size))
        #实例化模型
        y_pred = model(seq)
        #计算损失,反向传播梯度以及更新模型参数
        single_loss = loss_function(y_pred, labels)#训练过程中,正向传播生成网络的输出,计算输出和实际值之间的损失值
        single_loss.backward()#调用loss.backward()自动生成梯度,
        optimizer.step()#使用optimizer.step()执行优化器,把梯度传播回每个网络

    # 查看模型训练的结果
    if i%25 == 1:
        print(f'epoch:{i:3} loss:{single_loss.item():10.8f}')
print(f'epoch:{i:3} loss:{single_loss.item():10.10f}')

"""
预测
注意,test_input中包含12个数据,
在for循环中,12个数据将用于对测试集的第一个数据进行预测,然后将预测值附加到test_inputs列表中。
在第二次迭代中,最后12个数据将再次用作输入,并进行新的预测,然后 将第二次预测的新值再次添加到列表中。
由于测试集中有12个元素,因此该循环将执行12次。
循环结束后,test_inputs列表将包含24个数据,其中,最后12个数据将是测试集的预测值。
"""
fut_pred = 12
test_inputs = train_data_normalized[-train_window:].tolist()#首先打印出数据列表的最后12个值
print(test_inputs)

#更改模型为测试或者验证模式
model.eval()#把training属性设置为false,使模型处于测试或验证状态
for i in range(fut_pred):
    seq = torch.FloatTensor(test_inputs[-train_window:])
    with torch.no_grad():
        model.hidden = (torch.zeros(1, 1, model.hidden_layer_size),
                        torch.zeros(1, 1, model.hidden_layer_size))
        test_inputs.append(model(seq).item())
#打印最后的12个预测值
print(test_inputs[fut_pred:])
#由于对训练集数据进行了标准化,因此预测数据也是标准化了的
#需要将归一化的预测值转换为实际的预测值。通过inverse_transform实现
actual_predictions = scaler.inverse_transform(np.array(test_inputs[train_window:]).reshape(-1, 1))
print(actual_predictions)

"""
根据实际值,绘制预测值
"""
x = np.arange(132, 132+fut_pred, 1)
plt.title('Month vs Passenger')
plt.ylabel('Total Passengers')
plt.xlabel('Months')
plt.grid(True)
plt.autoscale(axis='x', tight=True)
plt.plot(flight_data['passengers'])
plt.plot(x, actual_predictions)
plt.show()
#绘制最近12个月的实际和预测乘客数量,以更大的尺度观测数据
plt.title('Month vs Passenger')
plt.ylabel('Total Passengers')
plt.xlabel('Months')
plt.grid(True)
plt.autoscale(axis='x', tight=True)
plt.plot(flight_data['passengers'][-train_window:])
plt.plot(x, actual_predictions)
plt.show()

到此这篇关于Pytorch实现LSTM案例总结学习的文章就介绍到这了,更多相关Pytorch实现LSTM内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Pytorch实现LSTM案例总结学习

本文链接: https://lsjlt.com/news/119636.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Pytorch实现LSTM案例总结学习
    目录前言模型构建部分主要工作1、构建网络层、前向传播forward()2、实例化网络,定义损失函数和优化器3、训练模型、反向传播backward()4、测试模型前言 关键步骤主要分为...
    99+
    2024-04-02
  • Java中导出Excel步骤总结(案例学习)
    【辰兮要努力】:hello你好我是辰兮,很高兴你能来阅读,昵称是希望自己能不断精进,向着优秀程序员前行! 博客来源于项目以及编程中遇到的问题总结,偶尔会有读书分享,我会陆续更新Java前端、后台...
    99+
    2023-08-31
    java excel 学习
  • PyTorch学习之软件准备与基本操作总结
    目录一、概述二、工具准备三、conda命令四、PyTorch的安装五、Jupyter修改默认路径一、概述 PyTorch可以认为是一个Python库,可以像NumPy、Pandas一...
    99+
    2024-04-02
  • python学习实操案例(二)
    目录任务1、将指定的十进制转换为二进制、八进制、十六进制二进制转换八进制和十六进制以及异常处理机制的应用任务2、为自己手机充值任务3、计算能量的消耗任务4、预测未来子女的身高 任务1...
    99+
    2024-04-02
  • python学习实操案例(三)
    目录任务1、循环输出26个字母对应的ASCII码值任务2、模拟用户登录任务3、猜数游戏任务4、计算100-999之间的水仙花数 任务1、循环输出26个字母对应的ASCII码值 x=...
    99+
    2024-04-02
  • python学习实操案例(五)
    目录任务1、我的咖啡馆你做主元组任务2、显示2019中超联赛中前五名排行任务3、模拟手机通讯录 任务1、我的咖啡馆你做主 元组 coffee_name=('蓝山','卡布奇诺','...
    99+
    2024-04-02
  • python学习实操案例(四)
    目录任务1、“千年虫”我来了函数enumerate排序之后的任务2、京东购物流程入库操作整个过程下面要学的是列表: 任务1、“千年虫&rdqu...
    99+
    2024-04-02
  • pyTorch深度学习softmax实现解析
    目录用PyTorch实现linear模型模拟数据集定义模型加载数据集optimizer模型训练softmax回归模型Fashion-MNISTcross_entropy模型的实现利用...
    99+
    2024-04-02
  • PyTorch实现FedProx联邦学习算法
    目录I. 前言III. FedProx1. 模型定义2. 服务器端3. 客户端更新IV. 完整代码I. 前言 FedProx的原理请见:FedAvg联邦学习FedProx异质网络优化...
    99+
    2024-04-02
  • Python人工智能学习PyTorch实现WGAN示例详解
    目录1.GAN简述2.生成器模块3.判别器模块4.数据生成模块5.判别器训练6.生成器训练7.结果可视化1.GAN简述 在GAN中,有两个模型,一个是生成模型,用于生成样本,一个是判...
    99+
    2024-04-02
  • SQL案例学习之字符串的合并与拆分方法总结
    目录字符串的合并字符串合并方法一:字符串合并方法二:字符串的拆分字符串拆分方法一:字符串拆分方法二:总结字符串的合并 在oracle中可能有多种实现方法,目前我已知的有两种,下面记录下这两种的实现: 字符串合并方法一...
    99+
    2024-04-02
  • PyTorch中如何实现自监督学习
    自监督学习是一种无需人工标注数据的学习方法,通过模型自身生成标签或目标来进行训练。在PyTorch中,可以通过以下几种方式实现自监督...
    99+
    2024-03-05
    PyTorch
  • MySQL学习之基础命令实操总结
    目录启动mysql服务连接mysql常用命令DatabaseTable启动mysql服务 (以管理员身份运行cmd) net start mysql 连接mysql mysql -...
    99+
    2024-04-02
  • pytorch实现ResNet结构的实例代码
    目录1.ResNet的创新1)亮点2)原因2.ResNet的结构1)浅层的残差结构2)深层的残差结构3)总结3.Batch Normalization4.参考代码1.ResNet的创...
    99+
    2024-04-02
  • python学习实操案例有哪些
    这篇文章主要介绍了python学习实操案例有哪些,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。任务1、将指定的十进制转换为二进制、八进制、十六进制二进制转换第一种和第二种写法...
    99+
    2023-06-29
  • pyTorch深入学习梯度和Linear Regression实现
    目录梯度线性回归(linear regression)模拟数据集加载数据集定义loss_function梯度 PyTorch的数据结构是tensor,它有个属性叫做requires_...
    99+
    2024-04-02
  • 使用Pytorch实现强化学习——DQN算法
    目录 一、强化学习的主要构成 二、基于python的强化学习框架 三、gym 四、DQN算法 1.经验回放 2.目标网络 五、使用pytorch实现DQN算法 1.replay memory 2.神经网络部分 3.Agent 4.模型训练...
    99+
    2023-09-24
    python 开发语言
  • PyTorch怎么实现FedProx联邦学习算法
    这篇文章主要介绍了PyTorch怎么实现FedProx联邦学习算法的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇PyTorch怎么实现FedProx联邦学习算法文章都会有所收获,下面我们一起来看看吧。I. 前言...
    99+
    2023-06-30
  • 如何在PyTorch中实现半监督学习
    在PyTorch中实现半监督学习可以使用一些已有的半监督学习方法,比如自训练(self-training)、伪标签(pseudo-l...
    99+
    2024-03-05
    PyTorch
  • python学习之路之案例0(实现登录功
    一、整个案例运用到的知识点    1.python字典、字符串、列表的灵活转换和使用    2.python数据结构之字符串:字符串的格式化、字符串的去空格(strip())    3.python数据结构之字典:字典的构建、字典和字符串的...
    99+
    2023-01-31
    之路 案例 python
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作