返回顶部
首页 > 资讯 > 后端开发 > Python >python接口自动化之正则用例参数化的示例详解
  • 190
分享到

python接口自动化之正则用例参数化的示例详解

2024-04-02 19:04:59 190人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

目录前言一、正则表达式语法1.1表示单字符1.2表示数量1.2.1匹配分组1.3 表示边界二、贪婪模式三、re模块3.1 re.findall()3.2re.search()3.3

前言

​我们在做接口自动化的时候,处理接口依赖的相关数据时,通常会使用正则表达式来进行提取相关的数据。

​正则表达式,又称正规表示式、正规表示法、正规表达式、规则表达式、常规表示法(Regular Expression,在代码中常简写为regex、regexp或RE) 。它是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。在很多文本编辑器里,正则表达式通常被用来检索、替换那些匹配某个模式的文本。而python 自1.5版本起增加了re模块,它提供 Perl 风格的正则表达式模式。

一、正则表达式语法

1.1表示单字符

​单字符:即表示一个单独的字符,比如匹配数字用\d,匹配非数字用\D。

​除以下语法,也可以匹配指定的具体字符,可以是1个也可以是多个。

字符

功能说明

.

匹配任意1个字符(除了\n)

[2a]

匹配[]中括号中列举的字符,如这里就是匹配2或者a这两个字符其中的一个

\d

匹配数字,即0-9

\D

匹配非数字

\s

匹配空白,即空格、tab键(tab键为两个空格)

\S

匹配非空白

\w

匹配单词字符,即a-z、A-Z、0-9、_(数字、字母、下划线)

\W

匹配非单词字符

​实例如下,这里先说明一下findall(匹配规则,要匹配的字符串)这个方法是查找所有匹配的数据,以列表的形式返回,后面会在re模块进行详解:

import re
# .:匹配任意1个字符
re1 = r'.'
res1 = re.findall(re1, '\nj8?0\nbth\nihb')
print(res1)	# 运行结果:['j', '8', '?', '0', 'b', 't', 'h', 'i', 'h', 'b']
# []:匹配列举中的其中一个
re2 = r"[abc]"
res2 = re.findall(re2, '1iugfiSHOIFUOFGIDHFGFD2345a6a78b99cc')
print(res2)	# 运行结果:['a', 'a', 'b', 'c', 'c']
# \d:匹配一个数字
re3 = r"\d"
res3 = re.findall(re3, "dfghjkl32212dfghjk")
print(res3)	# 运行结果:['3', '2', '2', '1', '2']
# \D:匹配一个非数字
re4 = r"\D"
res4 = re.findall(re4, "d212dk?\n$%3;]a")
print(res4)	# 运行结果:['d', 'd', 'k', '?', '\n', '$', '%', ';', ']', 'a']
# \s:匹配一个空白键或tab键(tab键实际就是两个空白键)
re5 = r"\s"
res5 = re.findall(re5,"a s d a  9999")
print(res5)	# 运行结果:[' ', ' ', ' ', ' ', ' ']
# \S: 匹配非空白键
re6 = r"\S"
res6 = re.findall(re6, "a s d a  9999")
print(res6)	# 运行结果:['a', 's', 'd', 'a', '9', '9', '9', '9']
# \w:匹配一个单词字符(数字、字母、下划线)
re7 = r"\w"
res7 = re.findall(re7, "ce12sd@#a as_#$")
print(res7)	# 运行结果:['c', 'e', '1', '2', 's', 'd', 'a', 'a', 's', '_']
# \W:匹配一个非单词字符(不是数字、字母、下划线)
re8 = r"\W"
res8 = re.findall(re8, "ce12sd@#a as_#$")
print(res8)	# 运行结果:['@', '#', ' ', '#', '$']
# 匹配指定字符
re9 = r"Python"
res9 = re.findall(re9, "cepy1thon12spython123@@python")
print(res9)	# 运行结果:['python', 'python']

1.2表示数量

​如果要匹配某个字符多次,就可以在字符后面加上数量进行表示,具体规则如下:

字符

功能说明

*

匹配前一个字符出现0次或者无限次,即可有可无

+

匹配前一个字符出现1次或无限次,即至少1次

?

匹配前一个字符出现0次或1次,即要么没有,要么只有1次

{m}

匹配前一个字符出现m次

{m,}

匹配前一个字符至少出现m次

{m,n}

匹配前一个字符出现从m到n次

​实例如下:

import re
# *:表示前一个字符出现0次以上(包括0次)
re21 = r"\d*"   # 这里匹配的规则,前一个字符是数字
res21 = re.findall(re21, "343aa1112df345g1h6699")  # 如匹配到a时,属于符合0次,但因为没有值所以会为空
print(res21)	# 运行结果:['343', '', '', '1112', '', '', '345', '', '1', '', '6699', '']
 
# ? : 表示0次或者一次
re22 = r"\d?"
res22 = re.findall(re22, "3@43*a111")
print(res22)	# 运行结果:['3', '', '4', '3', '', '', '1', '1', '1', '']
 
# {m}:表示匹配一个字符m次
re23 = r"1[3456789]\d{9}" # 手机号:第1位为1,第2位匹配列举的其中1个数字,第3位开始是数字,且匹配9次
res23 = re.findall(re23,"sas13566778899fgh256912345678jkghj12788990000aaa113588889999")
print(res23)	# 运行结果:['13566778899', '13588889999']
 
# {m,}:表示匹配一个字符至少m次
re24 = r"\d{7,}"
res24 = re.findall(re24, "sas12356fgh1234567jkghj12788990000aaa113588889999")
print(res24)	# 运行结果:['1234567', '12788990000', '113588889999']
 
# {m,n}:表示匹配一个字符出现m次到n次
re25 = r"\d{3,5}"
res25 = re.findall(re25, "aaaaa123456ghj333yyy77iii88jj909768876")
print(res25)	# 运行结果:['12345', '333', '90976', '8876']

1.2.1匹配分组

字符

功能说明

|

匹配左右任意一个表达式

(ab)

将括号中字符作为一个分组

实例如下:

import re
# 同时定义多个规则,只要满足其中一个
re31 = r"13566778899|13534563456|14788990000"
res31 = re.findall(re31, "sas13566778899fgh13534563456jkghj14788990000")
print(res31)	# 运行结果:['13566778899', '13534563456', '14788990000']
# ():匹配分组:在匹配规则的数据中提取括号里的数据
re32 = r"aa(\d{3})bb"	# 如何数据符合规则,结果只会取括号中的数据,即\d{3}
res32 = re.findall(re32, "ggghjkaa123bbhhaa672bbjhjjaa@45bb")
print(res32)	# 运行结果:['123', '672']

1.3 表示边界

字符

功能说明

^

匹配字符串开头,只能匹配开头

$

匹配字符串结尾,只能匹配结尾

\b

匹配一个单词的边界(单词:字母、数字、下划线)

\B

匹配非单词的边界

​实例如下:

import re
# ^:匹配字符串的开头
re41 = r"^python"   # 字符串开头为python
res41 = re.findall(re41, "python999python")  # 只会匹配这个字符串的开头
res411 = re.findall(re41, "1python999python")  # 因为开头是1,第1位就不符合了
print(res41)	# 运行结果:['python']
print(res411)	# 运行结果:[]
 
# $:匹配字符串的结尾
re42=r"python$"	# 字符串以python结尾
res42 = re.findall(re42, "python999python")
print(res42)	# 运行结果:['python']
 
# \b:匹配单词的边界,单词即:字母、数字、下划线
re43 = r"\bpython"  # 即匹配python,且python的前一位是不是单词
res43 = re.findall(re43, "1python 999 python")  # 这里第1个python的前1位是单词,因此第1个是不符合的
print(res43)	# 运行结果:['python']
 
# \B:匹配非单词的边界
re44 = r"\Bpython"  # 即匹配python,且python的前一位是单词
res44 = re.findall(re44, "1python999python")
print(res44)	# 运行结果:['python', 'python']

二、贪婪模式

​python里数量词默认是贪婪的,总是尝试匹配尽可能多的字符,而非贪婪模式则是尝试匹配尽可能少的字符,在表示数量的表达式后加上问号(?)就可以关闭贪婪模式。

​ 如下例子,匹配2个以上的数字,如果符合条件它会一直匹配到不符合才停止,如其中的34656fya,34656符合2个数字以上,那么它会一直匹配到6为止,如果关闭贪婪模式,那么在满足2个数字时就会停止,最后可以匹配到34、65。

import re
# 默认的贪婪模式下
test = 'aa123aaaa34656fyaa12a123D'
res = re.findall(r'\d{2,}', test)
print(res)	# 运行结果:['123', '34656', '12', '123']
 
# 关闭贪婪模式
res2 = re.findall(r'\d{2,}?', test)
print(res2)	# 运行结果:['12', '34', '65', '12', '12']

三、re模块

​在python中使用正则表达式,就会用到re模块来进行操作,提供的方法一般需要传入两个参数:

  • 参数1: 匹配的规则
  • 参数2:要进行匹配的字符串

3.1 re.findall()

​查找所有符合规范的字符串,以列表的形式返回。

import re
test = 'aa123aaaa34656fyaa12a123d'
res = re.findall(r'\d{2,}', test)
print(res)	# 运行结果:['123', '34656', '12', '123']

3.2re.search()

​查找第一个符合规范的字符串,返回的是一个匹配对象,可以通过group()将匹配到的数据直接提取出来。

import re
s = "123abc123aaa123bbb888ccc"
res2 = re.search(r'123', s)
print(res2)  # 运行结果:<re.Match object; span=(0, 3), match='123'>
 
# 通过group将匹配到的数据提取出来,返回类型为str
print(res2.group())   # 运行结果:123

​返回的匹配对象中,span为匹配到的数据的下标范围,match则是匹配到的值。

​group()参数说明:

  • 不传参数:获取的是匹配到的所有内容
  • 传入数值:可以通过参数来指定,获取第几个分组中的内容(获取第1个分组,传入参数1,获取第2个分组,传入参数2,依次类推。)
import re
s = "123abc123aaa123bbb888ccc"
re4 = r"aaa(\d{3})bbb(\d{3})ccc"	# 这里分组就是前面说到的匹配语法:()
res4 = re.search(re4, s)
print(res4)
# group不传参数:获取的是匹配到的所有内容
# group通过参数指定,获取第几个分组中的内容(获取第1个分组,传入参数1,获取第2个分组,传入参数2,依次类推..
print(res4.group())
print(res4.group(1))
print(res4.group(2))

3.3 re.match()

​从字符串的起始位置进行匹配,匹配成功则返回匹配到的对象,如果开头的位置不符合匹配的规则,不会继续往后面去匹配,直接返回None。re.match()与re.search()都是只匹配一个,不一样的是,前者只匹配字符串的开头,后者则是会匹配整个字符串,但只获取第一个符合的数据。

import re
s = "a123abc123aaa1234bbb888ccc"
# match:只匹配字符串的开头,开头不符合就返回None
res1 = re.match(r"a123", s)
res2 = re.match(r"a1234", s)
print(res1)  # 运行结果:<re.Match object; span=(0, 4), match='a123'>
print(res2)  # 运行结果:None

3.4re.sub()

​检索和替换:用于替换字符串中的匹配项

​re.sub()参数说明:

  • 参数1:待替换的字符串
  • 参数2:目标字符串
  • 参数3:要进行替换操作的字符串
  • 参数4:可以指定最多替换的次数,非必填(默认替换所有符合规范的字符串)
import re
s = "a123abc123aaa123bbb888ccc"
# <font color="#FF0000">参数1:</font>待替换的字符串
# <font color="#FF0000">参数2:</font>目标字符串
# <font color="#FF0000">参数3:</font>要进行替换操作的字符串
# <font color="#FF0000">参数4:</font>可以指定最多替换的次数,非必填(默认替换所有符合规范的字符串)
res5 = re.sub(r'123', "666", s, 4)
print(res5)  # 运行结果:a666abc666aaa666bbb888ccc

四、用例参数化

​在接口自动化测试中,我们的测试数据都是保存在excel中的,有些参数如果写死一个数据,可能换个场景或者换个环境就不能用了,那么切换环境时就需要先把新环境的测试数据准备好,并且能支持去跑我们的脚本,或者把excel的数据修改为适合新环境的测试数据,维护的成本较高。因此就需要把我们的自动化脚本测试数据尽量地参数化,降低维护成本。

我们先看简单版的参数化,以登录为例,登录时用到的账号、密码等信息都可以提取出来放到配置文件,修改数据或更换环境时直接在配置文件中统一修改就可以了。

​但如果有多个不同的数据需要参数化呢,每个参数都加个判断去替换数据吗?这样的代码既啰嗦又不好维护,这时re模块就可以用上了,直接看一个实例:

import re
from common.myconfig import conf
class TestData:
    """用于临时保存一些要替换的数据"""
    pass
def replace_data(data):
    r = r"#(.+?)#"	# 注意这个分组()内的内容
    # 判断是否有需要替换的数据
    while re.search(r, data):
        res = re.search(r, data)	# 匹配出第一个要替换的数据
        item = res.group()	# 提取要替换的数据内容
        key = res.group(1)	# 获取要替换内容中的数据项
        try:
            # 根据替换内容中的数据项去配置文件中找到对应的内容,进行替换
            data = data.replace(item, conf.get_str("test_data", key))
        except:
            # 如果在配置文件中找不到就在临时保存的数据中找,然后替换
            data = data.replace(item, getattr(TestData, key))
    return data

​注意这里的正则表达式是有使用?关闭贪婪模式的,因为测试数据中可能会需要参数化2个或以上的数据,如果不关闭贪婪模式,它就只能匹配搭配一个数据,举例如下:

import re
data = '{"mobile_phone":"#phone#","pwd":"#pwd#","user":#user#}'
r1 = "#(.+)#"
res1 = re.findall(r1, data)
print(res1)  # 运行结果:['phone#","pwd":"#pwd#","user":#user']	注意这里单引号只有一个数据
print(len(res1))      # 运行结果:1
r2 = "#(.+?)#"
res2 = re.findall(r2, data)
print(res2)  # 运行结果:['phone', 'pwd', 'user']
print(len(res2))      # 运行结果:3

​另外提到的一个用于临时保存数据的类,这里主要用于保存接口返回的数据,因为有些测试数据是动态变化的,可能要依赖于某个接口,后面的测试用例又需要这些数据,那么我们在接口返回时就可以保存到这个类里作为一个类属性,接着在需要用这个数据的测试用例时,把这个类属性提取出来替换到测试数据中即可。提示:设置属性setattr(对象, 属性名, 属性值),获取属性值getattr(对象, 属性名)。

总结

到此这篇关于python接口自动化之正则用例参数化的文章就介绍到这了,更多相关python正则用例参数化内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: python接口自动化之正则用例参数化的示例详解

本文链接: https://lsjlt.com/news/119281.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • python接口自动化之正则用例参数化的示例详解
    目录前言一、正则表达式语法1.1表示单字符1.2表示数量1.2.1匹配分组1.3 表示边界二、贪婪模式三、re模块3.1 re.findall()3.2re.search()3.3 ...
    99+
    2024-04-02
  • python接口自动化之正则用例参数化示例分析
    本篇内容主要讲解“python接口自动化之正则用例参数化示例分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python接口自动化之正则用例参数化示例分析”吧!前言我们在做接口自动化的时候,处...
    99+
    2023-07-02
  • 接口自动化测试用例详解
    phpunit 接口自动化测试系列 Post接口自动化测试用例 Post方式的接口是上传接口,需要对接口头部进行封装,所以没有办法在浏览器下直接调用,但是可以用Curl命令的-d参数传递接口需要的参数...
    99+
    2023-09-02
    自动化 测试用例 php 自动化测试 软件测试
  • python+requests+pytest接口自动化的实现示例
    目录1、发送get请求2、发送post请求3、发送https请求4、文件上传5、文件下载6、timeout超时7、鉴权 7.1、auth参数鉴权7.2、session操作7.3、to...
    99+
    2024-04-02
  • Python接口测试自动化的示例代码
    本篇内容主要讲解“Python接口测试自动化的示例代码”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python接口测试自动化的示例代码”吧!1、接口请求python 特别是 python 3....
    99+
    2023-06-16
  • Python接口自动化之cookie、session应用详解
    目录一、cookie1、cookie介绍2、cookie原理二、session1、session介绍2、session原理1. 存储位置不同:2. 存储容量不同:3. 存取方式不同:...
    99+
    2024-04-02
  • Python接口自动化 之用例读取方法总结
    目录1. Python第三方库xlrdxlrd代码演示2. Python第三方库pandaspandas代码演示3. Python第三方库yamlyaml代码演示总结前言: 在软件测...
    99+
    2024-04-02
  • python+pytest接口自动化参数关联
    目录前言一、什么是参数关联?二、有哪些场景?三、参数关联场景四、脚本编写1、在用例中按顺序调用2、 使用Fixture函数五、 总结前言 今天呢,笔者想和大家来聊聊python+py...
    99+
    2024-04-02
  • 〖Python接口自动化测试实战篇④〗- 接口自动化测试详解
    订阅 Python全栈白宝书-零基础入门篇 可报销!白嫖入口-请点击我。推荐他人订阅,可获取扣除平台费用后的35%收益,文末名片加V! 说明:该文属于 Python全栈白宝书专栏,免费阶段订...
    99+
    2023-09-04
    自动化 python自动化测试实战 自动化测试 接口测试 接口自动化测试
  • Python接口自动化之文件上传/下载接口详解
    目录〇、前言一、文件上传接口1. 接口文档2. 代码实现二、文件下载接口1. 接口文档2. 代码实现总结〇、前言 文件上传/下载接口与普通接口类似,但是有细微的区别。 如果需要发送文...
    99+
    2024-04-02
  • 正则化DropPath/drop_path用法示例(Python实现)
    DropPath/drop_path 是一种正则化手段,其效果是将深度学习模型中的多分支结构随机”删除“,python中实现如下所示: def drop_pa...
    99+
    2024-04-02
  • python+requests接口自动化测试框架实例详解教程
    摘要: python + requests实现的接口自动化框架详细教程 前段时间由于公司测试方向的转型,由原来的web页面功能测试转变成接口测试,之前大多都是手工进行,利用postman和jmeter进行的接口测试,后来,组内有人讲原先we...
    99+
    2023-09-29
    测试工具 pytest python 软件测试 经验分享
  • Python正则表达式中flags参数的实例详解
    目录flags参数忽略大小写多行模式匹配任何字符补充:正则表达式中的flags总结flags参数 re.I    IGNORECASE    ...
    99+
    2024-04-02
  • Python自动化办公之群发邮件案例详解
    目录背景实现过程总结背景 想象一下,现在你有一份Word邀请函模板,然后你有一份客户列表,上面有客户的姓名、联系方式、邮箱等基本信息,然后你的老板现在需要替换邀请函模板中的姓名,然后...
    99+
    2024-04-02
  • python+pytest接口自动化参数关联怎么实现
    这篇文章主要介绍了python+pytest接口自动化参数关联怎么实现的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇python+pytest接口自动化参数关联怎么实现文章都会有所收获,下面我们一起来看看吧。一...
    99+
    2023-07-02
  • Pytest+Yaml+Excel 接口自动化测试框架的实现示例
    目录一、框架架构二、项目目录结构三、框架功能说明四、核心逻辑说明配置文件输出目录请求工具类代码编写case程序主入口执行记录一、框架架构 二、项目目录结构 三、框架功能说明 解决...
    99+
    2024-04-02
  • Angular.js自动化测试之protractor的示例分析
    小编给大家分享一下Angular.js自动化测试之protractor的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!前...
    99+
    2024-04-02
  • Python自动化测试之异常处理机制实例详解
    目录一、前言二、异常处理合集2.1 异常处理讲解2.2 异常捕获2.3 异常捕获原理2.4 特定异常捕获2.5 异常捕获的处理2.6 except、Exception与BaseExc...
    99+
    2024-04-02
  • python自动化测试中APScheduler Flask的应用示例
    目录使用背景什么是 APScheduler 框架?APScheduler 框架包含四个组成部分APScheduler 在 flask 中使用编写任务函数,开始 APScheduler...
    99+
    2024-04-02
  • java接口性能从20s优化到500ms示例详解
    目录前言1. 案发现场2. 现状3. 第一次优化4. 第二次优化5. 第三次优化5.1 前端做分页5.2 分批调用接口前言 接口性能问题,对于从事后端开发的同学来说,是一个绕不开的话...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作