Python 官方文档:入门教程 => 点击学习
目录一、使用语法及参数二、实操1.例子一2.例子二3.删除重复项后重置索引drop_duplicates 方法实现对数据框 DataFrame 去除特定列的重复行,返回 DataFr
drop_duplicates 方法实现对数据框 DataFrame 去除特定列的重复行,返回 DataFrame 格式数据。
使用语法:
DataFrame.drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False)
参数:
import pandas as pd
df = pd.DataFrame({'a':[1,1,2,2],
'b':['a','b','a','b']})
# 单列
df.drop_duplicates('b', 'first', inplace=True)
print(df)
'''
a b
0 1 a
1 1 b
'''
# 多列
df.drop_duplicates(subset=['a', 'b'], keep='first', inplace=False)
# 删除所有重复项 不保留
df.drop_duplicates(subset=['a', 'b'], False)
# 构建测试数据框
import pandas as pd
df = pd.DataFrame({
'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
'rating': [4, 4, 3.5, 15, 5]
})
# 默认按所有列去重
df.drop_duplicates()
# 指定列
df.drop_duplicates(subset=['brand'])
# 保留最后一个重复值
df.drop_duplicates(subset=['brand', 'style'], keep='last')
# 方法一
df.drop_duplicates(ignore_index=True)
# 方法二
df.drop_duplicates().reset_index(drop=True)
# 方法三
df.index = range(df.shape[0])
到此这篇关于pd.drop_duplicates删除重复行的方法实现的文章就介绍到这了,更多相关pd.drop_duplicates删除重复行内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
--结束END--
本文标题: pd.drop_duplicates删除重复行的方法实现
本文链接: https://lsjlt.com/news/118781.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0