Python 官方文档:入门教程 => 点击学习
目录1、pd.cut()2、pd.qcut()3、pd.cut() v.s. pd.qcut()1、pd.cut() 用于将数据值按照值本身进行分段并排序到 bins 中。参数包含:
用于将数据值按照值本身进行分段并排序到 bins 中。
参数包含:x, bins, right, include_lowest, labels, retbins, precision
x :被划分的数组
bins :被划分的区间/区间数
# x = [1,2,3,5,3,4,1], bins = 3
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),3)
[Out] [(0.996, 2.333], (0.996, 2.333], (2.333, 3.667], (3.667, 5.0], (2.333, 3.667], (3.667, 5.0], (0.996, 2.333]]
CateGories (3, interval[float64]): [(0.996, 2.333] < (2.333, 3.667] < (3.667, 5.0]]
# x = [1,2,3,5,3,4,1], bins = [1,2,3]
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),[1,2,3])
[Out] [NaN, (1.0, 2.0], (2.0, 3.0], NaN, (2.0, 3.0], NaN, NaN]
Categories (2, interval[int64]): [(1, 2] < (2, 3]]
right :是否包含右端点,默认为 True;
include_lowest :是否包含左端点,默认为 False;
# x = [1,2,3,5,3,4,1], bins = [1,2,3], 默认不包含左端点 1,默认包含右端点 3
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),[1,2,3])
[Out] [NaN, (1.0, 2.0], (2.0, 3.0], NaN, (2.0, 3.0], NaN, NaN]
Categories (2, interval[int64]): [(1, 2] < (2, 3]]
# x = [1,2,3,5,3,4,1], bins = [1,2,3], 设置包含左端点 1,设置包含右端点 3
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),[1,2,3],include_lowest=True,right=False)
[Out] [[1.0, 2.0), [2.0, 3.0), NaN, NaN, NaN, NaN, [1.0, 2.0)]
Categories (2, interval[int64]): [[1, 2) < [2, 3)]
labels :是否用标记来替代返回的 bins,默认为 False,如需标记,标记数需与 bins 数一致,并为 labels 赋值一组列表;
# x = [1,2,3,5,3,4,1], bins = 3, 设置用指定标签 ['A','B','C'] 返回序列
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),3,labels=['A','B','C'])
[Out] [A, A, B, C, B, C, A]
Categories (3, object): [A < B < C]
retbins : 是否返回间距 bins,默认为 False,仅返回 x 中每个值对应的 bin 的列表,若 retbins = True,则返回 bin 的列表及对应的 bins。
# x = [1,2,3,5,3,4,1], bins = 3, 设置一并返回对应 bins 序列
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),3,retbins=True)
[Out] ([(0.996, 2.333], (0.996, 2.333], (2.333, 3.667], (3.667, 5.0], (2.333, 3.667], (3.667, 5.0], (0.996, 2.333]]
Categories (3, interval[float64]): [(0.996, 2.333] < (2.333, 3.667] < (3.667, 5.0]],
array([0.996 , 2.33333333, 3.66666667, 5. ]))
precision : 精度,区间边界值保留的小数点位数
# x = [1,2,3,5,3,4,1], bins = 3, 精度为2
[In ] pd.cut(np.array([1,2,3,5,3,4,1]),3,precision=2)
[Out] [(1.0, 2.33], (1.0, 2.33], (2.33, 3.67], (3.67, 5.0], (2.33, 3.67], (3.67, 5.0], (1.0, 2.33]]
Categories (3, interval[float64]): [(1.0, 2.33] < (2.33, 3.67] < (3.67, 5.0]]
基于分位数的离散化功能。 根据等级或基于样本分位数(或者说基于样本值落在区间的频率),将变量分离为相等大小的桶。
参数包含:x, q, labels, retbins, precision, duplicates
[In] ll = [1,2,3,5,3,4,1,2]
print('- - - pd.cut()示例1 - - -')
print(pd.cut(ll, 4, precision=2).value_counts())
print('- - - pd.cut()示例2 - - -')
print(pd.cut(ll, [1,2,4], precision=2).value_counts())
print('- - - pd.qcut()示例 - - -')
print(pd.qcut(ll, 4, precision=2).value_counts())
[Out] - - - pd.cut()示例1 - - -
(1.0, 2.0] 4
(2.0, 3.0] 2
(3.0, 4.0] 1
(4.0, 5.0] 1
dtype: int64
- - - pd.cut()示例2 - - -
(1, 2] 2
(2, 4] 3
dtype: int64
- - - pd.qcut()示例 - - -
(0.99, 1.75] 2
(1.75, 2.5] 2
(2.5, 3.25] 2
(3.25, 5.0] 2
dtype: int64
到此这篇关于python中pd.cut()与pd.qcut()的对比及示例的文章就介绍到这了,更多相关Python pd.cut()与pd.qcut()内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
--结束END--
本文标题: python中pd.cut()与pd.qcut()的对比及示例
本文链接: https://lsjlt.com/news/118712.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0