返回顶部
首页 > 资讯 > 后端开发 > Python >python库Tsmoothie模块数据平滑化异常点抓取
  • 761
分享到

python库Tsmoothie模块数据平滑化异常点抓取

2024-04-02 19:04:59 761人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

目录前言1.准备2.Tsmoothie 基本使用3.基于Tsmoothie的极端异常值检测前言 在处理数据的时候,我们经常会遇到一些非连续的散点时间序列数据: 有些时候,这样的散点

前言

在处理数据的时候,我们经常会遇到一些非连续的散点时间序列数据:

有些时候,这样的散点数据是不利于我们进行数据的聚类和预测的。因此我们需要把它们平滑化,如下图所示:

如果我们将散点及其范围区间都去除,平滑后的效果如下:

这样的时序数据是不是看起来舒服多了?此外,使用平滑后的时序数据去做聚类或预测或许有令人惊艳的效果,因为它去除了一些偏差值并细化了数据的分布范围。

如果我们自己开发一个这样的平滑工具,会耗费不少的时间。因为平滑的技术有很多种,你需要一个个地去研究,找到最合适的技术并编写代码,这是一个非常耗时的过程。平滑技术包括但不限于:

  • 指数平滑
  • 具有各种窗口类型(常数、汉宁、汉明、巴特利特、布莱克曼)的卷积平滑
  • 傅立叶变换的频谱平滑
  • 多项式平滑
  • 各种样条平滑(线性、三次、自然三次)
  • 高斯平滑
  • 二进制平滑

所幸,有大佬已经为我们实现好了时间序列的这些平滑技术,并在GitHub开源了这份模块的代码——它就是 Tsmoothie 模块。

1.准备

开始之前,你要确保python和pip已经成功安装在电脑上。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用vscode编辑器,它有许多的优点。

请选择以下任一种方式输入命令安装依赖:

  • windows 环境 打开 Cmd (开始-运行-CMD)。
  • MacOS 环境 打开 Terminal (command+空格输入Terminal)。
  • 如果你用的是 VSCode编辑器 或 PyCharm,可以直接使用界面下方的Terminal.
pip install tsmoothie

(PS) Tsmoothie 仅支持Python 3.6 及以上的版本。

2.Tsmoothie 基本使用

为了尝试Tsmoothie的效果,我们需要生成随机数据:

import numpy as np
import matplotlib.pyplot as plt
from tsmoothie.utils_func import sim_randomwalk
from tsmoothie.smoother import LowesSSMoother
# 生成 3 个长度为200的随机数据组
np.random.seed(123)
data = sim_randomwalk(n_series=3, timesteps=200,
                      process_noise=10, measure_noise=30)

然后使用Tsmoothie执行平滑化:

# 平滑
smoother = LowessSmoother(smooth_fraction=0.1, iterations=1)
smoother.smooth(data)

通过 smoother.smooth_data 你就可以获取平滑后的数据:

print(smoother.smooth_data)
# [[ 5.21462928 3.07898076 0.93933646 -1.19847767 -3.32294934
# -5.40678762 -7.42425709 -9.36150892 -11.23591897 -13.05271523
# ....... ....... ....... ....... ....... ]]

绘制效果图:

3.基于Tsmoothie的极端异常值检测

事实上,基于smoother生成的范围区域,我们可以进行异常值的检测:

可以看到,在蓝色范围以外的点,都属于异常值。我们可以轻易地将这些异常值标红或记录,以便后续的处理。

_low, _up = smoother.get_intervals('sigma_interval', n_sigma=2)
series['low'] = np.hstack([series['low'], _low[:,[-1]]])
series['up'] = np.hstack([series['up'], _up[:,[-1]]])
is_anomaly = np.logical_or(
    series['original'][:,-1] > series['up'][:,-1],
    series['original'][:,-1] < series['low'][:,-1]
).reshape(-1,1)

假设蓝色范围interval的最大值为up、最小值为low,如果存在 data > up 或 data < low 则表明此数据是异常点。

使用以下代码通过滚动数据点进行平滑化和异常检测,就能保存得到上方的GIF动图。

上滑查看更多代码

# Origin: https://github.com/cerlymarco/MEDIUM_NoteBook/blob/master/Anomaly_Detection_RealTime/Anomaly_Detection_RealTime.ipynb
import numpy as np
import matplotlib.pyplot as plt
from celluloid import Camera
from collections import defaultdict
from functools import partial
from tqdm import tqdm
from tsmoothie.utils_func import sim_randomwalk, sim_seasonal_data
from tsmoothie.smoother import *
def plot_history(ax, i, is_anomaly, window_len, color='blue', **pltargs):
    posrange = np.arange(0,i)
    ax.fill_between(posrange[window_len:],
                    pltargs['low'][1:], pltargs['up'][1:],
                    color=color, alpha=0.2)
    if is_anomaly:
        ax.scatter(i-1, pltargs['original'][-1], c='red')
    else:
        ax.scatter(i-1, pltargs['original'][-1], c='black')
    ax.scatter(i-1, pltargs['smooth'][-1], c=color)
    ax.plot(posrange, pltargs['original'][1:], '.k')
    ax.plot(posrange[window_len:],
            pltargs['smooth'][1:], color=color, linewidth=3)
    if 'ano_id' in pltargs.keys():
        if pltargs['ano_id'].sum()>0:
            not_zeros = pltargs['ano_id'][pltargs['ano_id']!=0] -1
            ax.scatter(not_zeros, pltargs['original'][1:][not_zeros],
                       c='red', alpha=1.)
np.random.seed(42)
n_series, timesteps = 3, 200
data = sim_randomwalk(n_series=n_series, timesteps=timesteps,
                      process_noise=10, measure_noise=30)
window_len = 20
fig = plt.figure(figsize=(18,10))
camera = Camera(fig)
axes = [plt.subplot(n_series,1,ax+1) for ax in range(n_series)]
series = defaultdict(partial(np.ndarray, shape=(n_series,1), dtype='float32'))
for i in tqdm(range(timesteps+1), total=(timesteps+1)):
    if i>window_len:
        smoother = ConvolutionSmoother(window_len=window_len, window_type='ones')
        smoother.smooth(series['original'][:,-window_len:])
        series['smooth'] = np.hstack([series['smooth'], smoother.smooth_data[:,[-1]]])
        _low, _up = smoother.get_intervals('sigma_interval', n_sigma=2)
        series['low'] = np.hstack([series['low'], _low[:,[-1]]])
        series['up'] = np.hstack([series['up'], _up[:,[-1]]])
        is_anomaly = np.logical_or(
            series['original'][:,-1] > series['up'][:,-1],
            series['original'][:,-1] < series['low'][:,-1]
        ).reshape(-1,1)
        if is_anomaly.any():
            series['ano_id'] = np.hstack([series['ano_id'], is_anomaly*i]).astype(int)
        for s in range(n_series):
            pltargs = {k:v[s,:] for k,v in series.items()}
            plot_history(axes[s], i, is_anomaly[s], window_len,
                         **pltargs)
        camera.snap()
    if i>=timesteps:
        continue
    series['original'] = np.hstack([series['original'], data[:,[i]]])
print('CREATING GIF...') # it may take a few seconds
camera._photos = [camera._photos[-1]] + camera._photos
animation = camera.animate()
animation.save('animation1.gif', codec="gif", writer='imagemagick')
plt.close(fig)
print('DONE')

注意,异常点并非都是负面作用,在不同的应用场景下,它们可能代表了不同的意义。

比如在股票中,它或许可以代表着震荡行情中某种趋势反转的信号。

或者在家庭用电量分析中,它可能代表着某个时刻的用电峰值,根据这个峰值我们可以此时此刻开启了什么样的电器。

所以异常点的作用需要根据不同应用场景进行不同的分析,才能找到它真正的价值。

总而言之,Tsmoothie 不仅可以使用多种平滑技术平滑化我们的时序数据,让我们的模型训练更加有效,还可以根据平滑结果找出数据中的离群点,是我们做数据分析和研究的一个好帮手,非常有价值。

以上就是python库Tsmoothie模块数据平滑化异常点抓取的详细内容,更多关于python Tsmoothie异常点抓取的资料请关注编程网其它相关文章!

--结束END--

本文标题: python库Tsmoothie模块数据平滑化异常点抓取

本文链接: https://lsjlt.com/news/118707.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • python库Tsmoothie模块数据平滑化异常点抓取
    目录前言1.准备2.Tsmoothie 基本使用3.基于Tsmoothie的极端异常值检测前言 在处理数据的时候,我们经常会遇到一些非连续的散点时间序列数据: 有些时候,这样的散点...
    99+
    2024-04-02
  • MySQL 数据库迁移工作笔记----连接抓取、展示与异常连接
    背景:由于公司机房网络调整,需要调整一批mysql 数据库的服务器IP,在新环境中已经搭建好新架构(keepalive+lvs),并需要开发工程师配合修改程序配置,共有2个业务,9台服务器,50多个实例。1...
    99+
    2024-04-02
  • Python中的数据可视化matplotlib与绘图库模块
    目录一、条形图bar()二、直方图三、折线图四、散点图+直线图五、饼图六、箱型图七、plot函数参数八、图像标注参数九、Matplolib应用matplotlib官方文档:https...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作