sds 的用途Http://www.gimoo.net/t/1512/ Sds 在 Redis 中的主要作用有以下两个: 实现字符串对象(StrinGobject);http://www.gimoo.net
sds 的用途Http://www.gimoo.net/t/1512/
Sds 在 Redis 中的主要作用有以下两个:
实现字符串对象(StrinGobject);http://www.gimoo.net/t/1512/
在 Redis 程序内部用作 char* 类型的替代品;http://www.gimoo.net/t/1512/
以下两个小节分别对这两种用途进行介绍。
实现字符串对象
Redis 是一个键值对数据库(key-value DB), 数据库的值可以是字符串、集合、列表等多种类型的对象, 而数据库的键则总是字符串对象。
对于那些包含字符串值的字符串对象来说, 每个字符串对象都包含一个 sds 值。
“包含字符串值的字符串对象”,这种说法初听上去可能会有点奇怪, 但是在 Redis 中, 一个字符串对象除了可以保存字符串值之外, 还可以保存 long 类型的值, 所以为了严谨起见, 这里需要强调一下: 当字符串对象保存的是字符串时, 它包含的才是 sds 值, 否则的话, 它就是一个 long 类型的值。http://www.gimoo.net/t/1512/
举个例子, 以下命令创建了一个新的数据库键值对, 这个键值对的键和值都是字符串对象, 它们都包含一个 sds 值:
redis> SET book "Mastering c++ in 21 days"
OK
redis> GET book
"Mastering C++ in 21 days"
以下命令创建了另一个键值对, 它的键是字符串对象, 而值则是一个集合对象:
redis> SADD NoSQL "Redis" "mongoDB" "Neo4j"
(integer) 3
redis> SMEMBERS nosql
1) "Neo4j"
2) "Redis"
3) "MongoDB"
用 sds 取代 C 默认的 char* 类型
因为 char* 类型的功能单一, 抽象层次低, 并且不能高效地支持一些 Redis 常用的操作(比如追加操作和长度计算操作), 所以在 Redis 程序内部, 绝大部分情况下都会使用 sds 而不是 char* 来表示字符串。
性能问题在稍后介绍 sds 定义的时候就会说到, 因为我们还没有了解过 Redis 的其他功能模块, 所以也没办法详细地举例说那里用到了 sds , 不过在后面的章节中, 我们会经常看到其他模块(几乎每一个)都用到了 sds 类型值。
目前来说, 只要记住这个事实即可: 在 Redis 中, 客户端传入服务器的协议内容、 aof 缓存、 返回给客户端的回复, 等等, 这些重要的内容都是由 sds 类型来保存的。
redis 中的字符串http://www.gimoo.net/t/1512/
在 C 语言中,字符串可以用一个 结尾的 char 数组来表示。
比如说, hello world 在 C 语言中就可以表示为 "hello world" 。
这种简单的字符串表示,在大多数情况下都能满足要求,但是,它并不能高效地支持长度计算和追加(append)这两种操作:
每次计算字符串长度(strlen(s))的复杂度为 θ(N) 。http://www.gimoo.net/t/1512/
对字符串进行 N 次追加,必定需要对字符串进行 N 次内存重分配(realloc)。http://www.gimoo.net/t/1512/
在 Redis 内部, 字符串的追加和长度计算很常见, 而 APPEND 和 STRLEN 更是这两种操作,在 Redis 命令中的直接映射, 这两个简单的操作不应该成为性能的瓶颈。
另外, Redis 除了处理 C 字符串之外, 还需要处理单纯的字节数组, 以及服务器协议等内容, 所以为了方便起见, Redis 的字符串表示还应该是二进制安全的: 程序不应对字符串里面保存的数据做任何假设, 数据可以是以 结尾的 C 字符串, 也可以是单纯的字节数组, 或者其他格式的数据。
考虑到这两个原因, Redis 使用 sds 类型替换了 C 语言的默认字符串表示: sds 既可高效地实现追加和长度计算, 同时是二进制安全的。
sds 的实现
在前面的内容中, 我们一直将 sds 作为一种抽象数据结构来说明, 实际上, 它的实现由以下两部分组成:
typedef char *sds;
struct sdshdr {
// buf 已占用长度
int len;
// buf 剩余可用长度
int free;
// 实际保存字符串数据的地方
char buf[];
};
其中,类型 sds 是 char * 的别名(alias),而结构 sdshdr 则保存了 len 、 free 和 buf 三个属性。
作为例子,以下是新创建的,同样保存 hello world 字符串的 sdshdr 结构:
struct sdshdr {
len = 11;
free = 0;
buf = "hello world"; // buf 的实际长度为 len + 1
};
通过 len 属性, sdshdr 可以实现复杂度为 θ(1) 的长度计算操作。
另一方面, 通过对 buf 分配一些额外的空间, 并使用 free 记录未使用空间的大小, sdshdr 可以让执行追加操作所需的内存重分配次数大大减少, 下一节我们就会来详细讨论这一点。
当然, sds 也对操作的正确实现提出了要求 —— 所有处理 sdshdr 的函数,都必须正确地更新 len 和 free 属性,否则就会造成 bug 。
数据类型定义http://www.gimoo.net/t/1512/
与sds实现有关的数据类型有两个,一个是 sds:
// 字符串类型的别名
typedef char *sds;
http://www.gimoo.net/t/1512/
另一个是 sdshdr:
// 持有sds的结构
struct sdshdr {
// buf中已经被使用的字符串空间数量
int len;
// buf中预留字符串的空间数量
int free;
// 实际存储字符串的地方
char buf[];
};
http://www.gimoo.net/t/1512/
其中,sds只是字符串数组类型char*的别名,而sdshdr用于持有和保存sds的信息
比如,sdshdr.len可以用于在O(1)的复杂度下获取sdshdr.buf中存储的字符串的实际长度,而sdshdr.free则用于保存sdshdr.buf中还有多少预留空间
(这里sdshdr应该是sds handler的缩写)
将sdshdr用作sdshttp://www.gimoo.net/t/1512/
sds模块对sdshdr结构使用了一点小技巧:通过指针运算,它使得sdshdr结构可以像sds类型一样被传值和处理,并在需要的时候恢复成sdshdr类型
通过下面的函数定义来理解这个技巧
sdsnewlen 函数返回一个新的sds值,实际上,它创建的却是一个sdshdr结构:
sds sdsnewlen(const void *init, size_t initlen)
{
struct sdshdr *sh;
if (init) {
// 创建
sh = malloc(sizeof(struct sdshdr) + initlen + 1);
} else {
// 重分配
sh = calloc(1, sizeof(struct sdshdr) + initlen + 1);
}
if (sh == NULL) return NULL;
sh->len = initlen;
sh->free = 0; // 刚开始free为0
if (initlen && init) {
memcpy(sh->buf, init, initlen);
}
sh->buf[initlen] = '';
// 只返回sh->buf这个字符串部分
return (char *)sh->buf;
}
http://www.gimoo.net/t/1512/
通过使用变量持有一个sds的值,在遇到那些只处理sds值本身的函数时,可以直接将sds传给它们。比如说,sdstoupper 函数就是其中的一个例子:
static inline size_t sdslen(const sds s)
{
// 从sds中计算出相应的sdshdr结构
struct sdshdr *sh = (void *)(s - (sizeof(struct sdshdr)));
return sh->len;
}
void sdstoupper(sds s)
{
int len = sdslen(s), j;
for (j = 0; j < len; j ++)
s[j] = toupper(s[j]);
}
http://www.gimoo.net/t/1512/
这里有一个技巧,通过指针运算,可以从sds值中计算出相应的sdshdr结构:
sds虽然是指向char *的buf(ps:并且空数组不占用内存空间,数组名即为内存地址),但是分配的时候是分配sizeof(struct sdshdr) + initlen + 1的,通过sds - sizeof(struct sdshdr)可以计算出struct sdshdr的首地址,从而可以得到len和free的信息
WEBroot/GCms/lib/api/Open/Article.PHP on line 161http://www.gimoo.net/t/1512/
img/2015/08/19/141745_55d41f8909e67.jpg" alt="查看图片" />
sdsavail 函数就是使用这中技巧的一个例子:
static inline size_t sdsavail(const sds s)
{
struct sdshdr *sh = (void *)(s - (sizeof(struct sdshdr)));
return sh->free;
}
http://www.gimoo.net/t/1512/
内存分配函数实现http://www.gimoo.net/t/1512/
和Reids 的实现决策相关的函数是 sdsMakeRoomFor :
sds sdsMakeRoomFor(sds s, size_t addlen)
{
struct sdshdr *sh, *newsh;
size_t free = sdsavail(s);
size_t len, newlen;
// 预留空间可以满足本地拼接
if (free >= addlen) return s;
len = sdslen(s);
sh = (void *)(s - (sizeof(struct sdshdr)));
// 设置新sds的字符串长度
// 这个长度比完成本次拼接实际所需的长度要大
// 通过预留空间优化下次拼接操作
newlen = (len + addlen);
if (newlen < 1024 * 1024)
newlen *= 2;
else
newlen += 1024;
// 重新分配sdshdr
newsh = realloc(sh, sizeof(struct sdshdr) + newlen + 1);
if (newsh == NULL) return NULL;
newsh->free = newlen - len;
// 只返回字符串部分
return newsh->buf;
}
http://www.gimoo.net/t/1512/
这种内存分配策略表明,在对sds 值进行扩展(expand)时,总会预留额外的空间,通过花费更多的内存,减少了对内存进行重分配(reallocate)的次数,并优化下次扩展操作的处理速度
再把redis的如果实现对sds字符串扩展的方法贴一下,很不错的思路:
sds sdscatlen(sds s, const void *t, size_t len)
{
struct sdshdr *sh;
size_t curlen = sdslen(s);
// O(N)
s = sdsMakeRoomFor(s, len);
if (s == NULL) return NULL;
// 复制
memcpy(s + curlen, t, len);
// 更新len和free属性
sh = (void *)(s - (sizeof(struct sdshdr)));
sh->len = curlen + len;
sh->free = sh->free - len;
// 终结符
s[curlen + len] = '';
return s;
}
sds sdscat(sds s, const char *t)
{
return sdscatlen(s, t, strlen(t));
}
--结束END--
本文标题: Redis中的动态字符串学习教程
本文链接: https://lsjlt.com/news/11791.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-10-23
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0