返回顶部
首页 > 资讯 > 后端开发 > Python >pandas选择或添加列生成新的DataFrame操作示例
  • 418
分享到

pandas选择或添加列生成新的DataFrame操作示例

2024-04-02 19:04:59 418人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

目录如何向 pandas.DataFrame 添加新的列或行选择某些列选择某些列和行添加新的列更改某一列的值补全缺失值如何向 pandas.DataFrame 添加新的列或行 通过指

如何向 pandas.DataFrame 添加新的列或行

通过指定新的列名/行名来添加,或者用pandas.DataFrame的assign()、insert()、append()方法添加等方法。

这里,将描述以下内容。

将列添加到 pandas.DataFrame

  • 通过指定新列名添加
  • 用assign()方法添加/分配
  • 用insert()方法添加到任意位置
  • 使用 concat() 函数水平连接 Series 和 DataFrame

向pandas.DataFrame 添加一行

  • 通过指定新行名称添加
  • 用append()方法添加
  • 使用 concat() 函数垂直连接 Series 和 DataFrame
  • 转置然后使用assign()、insert()方法

选择某些列

import pandas as pd
# 从excel中读取数据,生成DataFrame数据
# 导入Excel路径和sheet name
df = pd.read_excel(excelName, sheet_name=sheetName)
# 读取某些列,生成新的DataFrame
newDf = pd.DataFrame(df, columns=[column1, column2, column3])

选择某些列和行

# 读取某些列,并根据某个列的值筛选行
newDf = pd.DataFrame(df, columns=[column1, column2, column3])[(df.column1 == value1) & (df.column2 == value2)]

添加新的列

# 第一种直接赋值
df["newColumn"] = newValue
# 第二种用concat组合两个DataFrame
pd.concat([oldDf, newDf])

更改某一列的值

# 第一种,replace
df["column1"] = df["column1"].replace(oldValue, newValue)
# 第二种,map
df["column1"] = df["column1"].map({oldValue: newValue})
# 第三种,loc
# 将column2 中某些行(通过column1中的value1来过滤出来的)的值为value2
df.loc[df["column1"] == value1, "column2"] = value2

补全缺失值

# fillna填充缺失值
df["column1"] = df["column1"].fillna(value1)

以上就是pandas选择或添加列生成新的DataFrame操作示例的详细内容,更多关于pandas生成DataFrame的资料请关注编程网其它相关文章!

--结束END--

本文标题: pandas选择或添加列生成新的DataFrame操作示例

本文链接: https://lsjlt.com/news/117835.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作