返回顶部
首页 > 资讯 > 后端开发 > Python >python人工智能tensorflow函数tf.assign使用方法
  • 478
分享到

python人工智能tensorflow函数tf.assign使用方法

2024-04-02 19:04:59 478人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

目录参数数量及其作用例子参数数量及其作用 该函数共有五个参数,分别是: 被赋值的变量 ref要分配给变量的值 value、是否验证形状 validate_shape是否进行锁定保护

参数数量及其作用

该函数共有五个参数,分别是:

  • 被赋值的变量 ref
  • 要分配给变量的值 value、
  • 是否验证形状 validate_shape
  • 是否进行定保护 use_locking
  • 名称 name
def assign(ref, value, validate_shape=None, use_locking=None, name=None)
Update 'ref' by assigning 'value' to it.
This operation outputs a Tensor that holds the new value of 'ref' after 
the value has been assigned. This makes it easier to chain operations  
that need to use the reset value.  
Args:
  ref: A mutable `Tensor`.  
	Should be from a `Variable` node. May be uninitialized.  
  value: A `Tensor`. Must have the same type as `ref`.  
    The value to be assigned to the variable.  
  validate_shape: An optional `bool`. Defaults to `True`.  
    If true, the operation will validate that the shape  
    of 'value' matches the shape of the Tensor being assigned to.  If false,  
    'ref' will take on the shape of 'value'.  
  use_locking: An optional `bool`. Defaults to `True`.  
    If True, the assignment will be protected by a lock;  
    otherwise the behavior is undefined, but may exhibit less contention.  
  name: A name for the operation (optional).  
Returns:
  A `Tensor` that will hold the new value of 'ref' after  
  the assignment has completed.    

该函数的作用是将一个要分配给变量的值value赋予被赋值的变量ref,用于Tensorflow各个参数的变量赋值。

例子

该例子将举例如何进行变量之间的数据赋值和如何进行集合间的数据赋值。

import tensorflow as tf;  
import numpy as np;  
c1 = ['c1', tf.GraphKeys.GLOBAL_VARIABLES]
c2 = ['c2', tf.GraphKeys.GLOBAL_VARIABLES]
#常量初始化器
v1_cons = tf.get_variable('v1_cons',dtype = tf.float32,shape=[1,4], initializer=tf.constant_initializer(), collections = c1)
v2_cons = tf.get_variable('v2_cons',dtype = tf.float32,shape=[1,4], initializer=tf.constant_initializer(9), collections = c1)
#正太分布初始化器
v1_nor = tf.get_variable('v1_nor',dtype = tf.float32, shape=[1,4], initializer=tf.random_nORMal_initializer(mean=0, stddev=5), collections = c2)
v2_nor = tf.get_variable('v2_nor',dtype = tf.float32, shape=[1,4], initializer=tf.random_normal_initializer(mean=0, stddev=5), collections = c2)
assign1 = tf.assign(v1_cons,v2_cons)    #将v2_cons赋予v1_cons
c1_get = tf.get_collection('c1')        #获得c1集合
c2_get = tf.get_collection('c2')        #获得c2集合
assign2 = [tf.assign(cg1,cg2) for cg1,cg2 in zip(c1_get,c2_get) ]   #将c2赋予c1
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print("v1_cons:",sess.run(v1_cons))
    print("v2_cons:",sess.run(v2_cons))
    print(sess.run(assign1))            #显示赋值后的结果
    print("将v2_cons赋予v1_cons:",sess.run(v1_cons))
    print("c1_get_collection:",sess.run(c1_get))
    print("c2_get_collection:",sess.run(c2_get))
    print(sess.run(assign2))            #显示赋值后的结果
    print("将c2赋予c1:",sess.run(c1_get))

其输出为:

v1_cons: [[0. 0. 0. 0.]]
v2_cons: [[9. 9. 9. 9.]]
[[9. 9. 9. 9.]]
将v2_cons赋予v1_cons: [[9. 9. 9. 9.]]
c1_get_collection: [array([[9., 9., 9., 9.]], dtype=float32), array([[9., 9., 9., 9.]], dtype=float32)]
c2_get_collection: [array([[-3.9746916, -7.5332146,  2.4480317, -1.3282107]], dtype=float32), array([[10.687443 ,  3.6653206,  1.7079141, -4.524155 ]], dtype=float32)]
[array([[-3.9746916, -7.5332146,  2.4480317, -1.3282107]], dtype=float32), array([[10.687443 ,  3.6653206,  1.7079141, -4.524155 ]], dtype=float32)]
将c2赋予c1: [array([[-3.9746916, -7.5332146,  2.4480317, -1.3282107]], dtype=float32), array([[10.687443 ,  3.6653206,  1.7079141, -4.524155 ]], dtype=float32)]

以上就是python人工智能tensorflow函数tf.assign使用方法的详细内容,更多关于tensorflow函数tf.assign的资料请关注编程网其它相关文章!

--结束END--

本文标题: python人工智能tensorflow函数tf.assign使用方法

本文链接: https://lsjlt.com/news/117693.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作