返回顶部
首页 > 资讯 > 后端开发 > Python >Python中弱引用的神奇用法与原理详解
  • 573
分享到

Python中弱引用的神奇用法与原理详解

2024-04-02 19:04:59 573人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

目录背景典型用法工作原理实现细节总结背景 开始讨论弱引用( weakref )之前,我们先来看看什么是弱引用?它到底有什么作用? 假设我们有一个多线程程序,并发处

背景

开始讨论弱引用( weakref )之前,我们先来看看什么是弱引用?它到底有什么作用?

假设我们有一个多线程程序,并发处理应用数据:

# 占用大量资源,创建销毁成本很高\
class Data:\
    def __init__(self, key):\
        pass

应用数据 Data 由一个 key 唯一标识,同一个数据可能被多个线程同时访问。由于 Data 需要占用很多系统资源,创建和消费的成本很高。我们希望 Data 在程序中只维护一个副本,就算被多个线程同时访问,也不想重复创建。

为此,我们尝试设计一个缓存中间件 Cacher :

import threading
# 数据缓存
class Cacher:
    def __init__(self):
        self.pool = {}
        self.lock = threading.Lock()
    def get(self, key):
        with self.lock:
            data = self.pool.get(key)
            if data:
                return data
            self.pool[key] = data = Data(key)
            return data

Cacher 内部用一个 dict 对象来缓存已创建的 Data 副本,并提供 get 方法用于获取应用数据 Data 。get 方法获取数据时先查缓存字典,如果数据已存在,便直接将其返回;如果数据不存在,则创建一个并保存到字典中。因此,数据首次被创建后就进入缓存字典,后续如有其它线程同时访问,使用的都是缓存中的同一个副本。

感觉非常不错!但美中不足的是:Cacher 有资源泄露的风险!

因为 Data 一旦被创建后,就保存在缓存字典中,永远都不会释放!换句话讲,程序的资源比如内存,会不断地增长,最终很有可能会爆掉。因此,我们希望一个数据等所有线程都不再访问后,能够自动释放。

我们可以在 Cacher 中维护数据的引用次数, get 方法自动累加这个计数。于此同时提供一个 remove 新方法用于释放数据,它先自减引用次数,并在引用次数降为零时将数据从缓存字段中删除。

线程调用 get 方法获取数据,数据用完后需要调用 remove 方法将其释放。Cacher 相当于自己也实现了一遍引用计数法,这也太麻烦了吧!python 不是内置了垃圾回收机制吗?为什么应用程序还需要自行实现呢?

冲突的主要症结在于 Cacher 的缓存字典:它作为一个中间件,本身并不使用数据对象,因此理论上不应该对数据产生引用。那有什么黑科技能够在不产生引用的前提下,找到目标对象吗?我们知道,赋值都是会产生引用的!

典型用法

这时,弱引用( weakref )隆重登场了!弱引用是一种特殊的对象,能够在不产生引用的前提下,关联目标对象。

# 创建一个数据
>>> d = Data('fasionchan.com')
>>> d
<__main__.Data object at 0x1018571f0>

# 创建一个指向该数据的弱引用
>>> import weakref
>>> r = weakref.ref(d)

# 调用弱引用对象,即可找到指向的对象
>>> r()
<__main__.Data object at 0x1018571f0>
>>> r() is d
True

# 删除临时变量d,Data对象就没有其他引用了,它将被回收
>>> del d
# 再次调用弱引用对象,发现目标Data对象已经不在了(返回None)
>>> r()

这样一来,我们只需将 Cacher 缓存字典改成保存弱引用,问题便迎刃而解!

import threading
import weakref
# 数据缓存
class Cacher:
    def __init__(self):
        self.pool = {}
        self.lock = threading.Lock()
    def get(self, key):
        with self.lock:
            r = self.pool.get(key)
            if r:
                data = r()
                if data:
                    return data
            data = Data(key)
            self.pool[key] = weakref.ref(data)
            return data

由于缓存字典只保存 Data 对象的弱引用,因此 Cacher 不会影响 Data 对象的引用计数。当所有线程都用完数据后,引用计数就降为零因而被释放。

实际上,用字典缓存数据对象的做法很常用,为此 weakref 模块还提供了两种只保存弱引用的字典对象:

  • weakref.WeakKeyDictionary ,键只保存弱引用的映射类(一旦键不再有强引用,键值对条目将自动消失);
  • weakref.WeakValueDictionary ,值只保存弱引用的映射类(一旦值不再有强引用,键值对条目将自动消失);

因此,我们的数据缓存字典可以采用 weakref.WeakValueDictionary 来实现,它的接口跟普通字典完全一样。这样我们不用再自行维护弱引用对象,代码逻辑更加简洁明了:

import threading
import weakref
# 数据缓存
class Cacher:
    def __init__(self):
        self.pool = weakref.WeakValueDictionary()
        self.lock = threading.Lock()
    def get(self, key):
        with self.lock:
            data = self.pool.get(key)
            if data:
                return data
            self.pool[key] = data = Data(key)
            return data

weakref 模块还有很多好用的工具类和工具函数,具体细节请参考官方文档,这里不再赘述。

工作原理

那么,弱引用到底是何方神圣,为什么会有如此神奇的魔力呢?接下来,我们一起揭下它的面纱,一睹真容!

>>> d = Data('fasionchan.com')

# weakref.ref 是一个内置类型对象
>>> from weakref import ref
>>> ref
<class 'weakref'>

# 调用weakref.ref类型对象,创建了一个弱引用实例对象
>>> r = ref(d)
>>> r
<weakref at 0x1008d5b80; to 'Data' at 0x100873D60>

经过前面章节,我们对阅读内建对象源码已经轻车熟路了,相关源码文件如下:

  • Include/weakrefobject.h 头文件包含对象结构体和一些宏定义;
  • Objects/weakrefobject.c 源文件包含弱引用类型对象及其方法定义;

我们先扒一扒弱引用对象的字段结构,定义于 Include/weakrefobject.h 头文件中的第 10-41 行:

typedef struct _PyWeakReference PyWeakReference;


#ifndef Py_LIMITED_api
struct _PyWeakReference {
    PyObject_HEAD

    
    PyObject *wr_object;

    
    PyObject *wr_callback;

    
    Py_hash_t hash;

    
    PyWeakReference *wr_prev;
    PyWeakReference *wr_next;
};
#endif

由此可见,PyWeakReference 结构体便是弱引用对象的肉身。它是一个定长对象,除固定头部外还有 5 个字段:

  • wr_object ,对象指针,指向被引用对象,弱引用根据该字段可以找到被引用对象,但不会产生引用;
  • wr_callback ,指向一个可调用对象,当被引用的对象销毁时将被调用;
  • hash ,缓存被引用对象的哈希值;
  • wr_prev 和 wr_next 分别是前后向指针,用于将弱引用对象组织成双向链表

结合代码中的注释,我们知道:

  • 弱引用对象通过 wr_object 字段关联被引用的对象,如上图虚线箭头所示;
  • 一个对象可以同时被多个弱引用对象关联,图中的 Data 实例对象被两个弱引用对象关联;
  • 所有关联同一个对象的弱引用,被组织成一个双向链表,链表头保存在被引用对象中,如上图实线箭头所示;
  • 当一个对象被销毁后,Python 将遍历它的弱引用链表,逐一处理:
    • 将 wr_object 字段设为 None ,弱引用对象再被调用将返回 None ,调用者便知道对象已经被销毁了;
    • 执行回调函数 wr_callback (如有);

由此可见,弱引用的工作原理其实就是设计模式中的 观察者模式( Observer )。当对象被销毁,它的所有弱引用对象都得到通知,并被妥善处理。

实现细节

掌握弱引用的基本原理,足以让我们将其用好。如果您对源码感兴趣,还可以再深入研究它的一些实现细节。

前面我们提到,对同一对象的所有弱引用,被组织成一个双向链表,链表头保存在对象中。由于能够创建弱引用的对象类型是多种多样的,很难由一个固定的结构体来表示。因此,Python 在类型对象中提供一个字段 tp_weaklistoffset ,记录弱引用链表头指针在实例对象中的偏移量。

由此一来,对于任意对象 o ,我们只需通过 ob_type 字段找到它的类型对象 t ,再根据 t 中的 tp_weaklistoffset 字段即可找到对象 o 的弱引用链表头。

Python 在 Include/objimpl.h 头文件中提供了两个宏定义:


#define PyType_SUPPORTS_WEAKREFS(t) ((t)->tp_weaklistoffset > 0)

#define PyObject_GET_WEAKREFS_LISTPTR(o) \
    ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
  • PyType_SUPPORTS_WEAKREFS 用于判断类型对象是否支持弱引用,仅当 tp_weaklistoffset 大于零才支持弱引用,内置对象 list 等都不支持弱引用;
  • PyObject_GET_WEAKREFS_LISTPTR 用于取出一个对象的弱引用链表头,它先通过 Py_TYPE 宏找到类型对象 t ,再找通过 tp_weaklistoffset 字段确定偏移量,最后与对象地址相加即可得到链表头字段的地址;

我们创建弱引用时,需要调用弱引用类型对象 weakref 并将被引用对象 d 作为参数传进去。弱引用类型对象 weakref 是所有弱引用实例对象的类型,是一个全局唯一的类型对象,定义在 Objects/weakrefobject.c 中,即:_PyWeakref_RefType(第 350 行)。

根据对象模型中学到的知识,Python 调用一个对象时,执行的是其类型对象中的 tp_call 函数。因此,调用弱引用类型对象 weakref 时,执行的是 weakref 的类型对象,也就是 type 的 tp_call 函数。tp_call 函数则回过头来调用 weakref 的 tp_new 和 tp_init 函数,其中 tp_new 为实例对象分配内存,而 tp_init 则负责初始化实例对象。

回到 Objects/weakrefobject.c 源文件,可以看到 PyWeakref_RefType 的 tp_new 字段被初始化成 *weakref___new_*  (第 276 行)。该函数的主要处理逻辑如下:

  • 解析参数,得到被引用的对象(第 282 行);
  • 调用 PyType_SUPPORTS_WEAKREFS 宏判断被引用的对象是否支持弱引用,不支持就抛异常(第 286 行);
  • 调用 GET_WEAKREFS_LISTPTR 行取出对象的弱引用链表头字段,为方便插入返回的是一个二级指针(第 294 行);
  • 调用 get_basic_refs 取出链表最前那个 callback 为空 基础弱引用对象(如有,第 295 行);
  • 如果 callback 为空,而且对象存在 callback 为空的基础弱引用,则复用该实例直接将其返回(第 296 行);
  • 如果不能复用,调用 tp_alloc 函数分配内存、完成字段初始化,并插到对象的弱引用链表(第 309 行);
    • 如果 callback 为空,直接将其插入到链表最前面,方便后续复用(见第 4 点);
    • 如果 callback 非空,将其插到基础弱引用对象(如有)之后,保证基础弱引用位于链表头,方便获取;

当一个对象被回收后,tp_dealloc 函数将调用 PyObject_ClearWeakRefs 函数对它的弱引用进行清理。该函数取出对象的弱引用链表,然后逐个遍历,清理 wr_object 字段并执行 wr_callback 回调函数(如有)。具体细节不再展开,有兴趣的话可以自行查阅 Objects/weakrefobject.c 中的源码,位于 880 行。

好了,经过本节学习,我们彻底掌握了弱引用相关知识。弱引用可以在不产生引用计数的前提下,对目标对象进行管理,常用于框架和中间件中。弱引用看起来很神奇,其实设计原理是非常简单的观察者模式。弱引用对象创建后便插到一个由目标对象维护的链表中,观察(订阅)对象的销毁事件。

总结

到此这篇关于Python中弱引用的神奇用法与原理的文章就介绍到这了,更多相关Python弱引用用法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Python中弱引用的神奇用法与原理详解

本文链接: https://lsjlt.com/news/117381.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Python中弱引用的神奇用法与原理详解
    目录背景典型用法工作原理实现细节总结背景 开始讨论弱引用( weakref )之前,我们先来看看什么是弱引用?它到底有什么作用? 假设我们有一个多线程程序,并发处...
    99+
    2024-04-02
  • java弱引用的理解与使用
    在Java里, 当一个对象被创建时, 它被放在内存堆里. 当GC运行的时候, 如果发现没有任何引用指向该对象, 该对象就会被回收以腾出内存空间。或者换句话说, 一个对象被回收, 必须满足两个条件: 1)没有任何引用指向它 (...
    99+
    2020-01-26
    java教程 java
  • 智能指针与弱引用详解
    在android 中可以广泛看到的template<typename T> class Sp 句柄类实际上是android 为实现垃圾回收机制的智能指针。智能指针是c++...
    99+
    2022-11-15
    智能指针 弱引用
  • 详解C++语言中std::array的神奇用法
    目录概述自动推导数组大小用函数返回std::array编译期字面量数值合法性校验编译期生成数组截取子数组拼接多个数组编译期拼接字符串展望C++20——打破更多的枷锁尾注概述 std:...
    99+
    2024-04-02
  • PostgreSQLlimit的神奇作用详解
    最近碰到这样一个SQL引发的性能问题,SQL内容大致如下: SELECT * FROM t1 WHERE id = 999 AND (case $1 WHEN...
    99+
    2024-04-02
  • 十分钟理解Java中的弱引用
    本篇文章尝试从What、Why、How这三个角度来探索Java中的弱引用,帮助大家理解Java中弱引用的定义、基本使用场景和使用方法。由于个人水平有限,叙述中难免存在不准确或是不清晰的地方,希望大家可以指出,谢谢大家:)1. What——什...
    99+
    2023-06-02
  • PostgreSQL limit的神奇作用详解
    最近碰到这样一个SQL引发的性能问题,SQL内容大致如下: SELECT * FROM t1 WHERE id = 999 AND (case $1 WHEN 'true' THEN in...
    99+
    2024-04-02
  • C 语言的弱符号与弱引用你了解吗
    目录C语言中的__attribute__((weak)) 与 attribute ((weakref())弱符号弱符号的作用与示例弱引用测试代码1:测试代码2:总...
    99+
    2024-04-02
  • java中ThreadLocalMap使用弱引用的原因有哪些
    小编给大家分享一下java中ThreadLocalMap使用弱引用的原因有哪些,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!Java可以用来干什么Java主要应用于:1. web开发;2. Android开发;3. 客户端...
    99+
    2023-06-14
  • 详解JavaString中intern方法的原理与使用
    目录简介常量池简介intern方法简介(JDK7)原理(JDK6与JDK7)例程测试例程分析jdk1.6jdk1.7应用实例简介 本文介绍Java的String的intern方法的原...
    99+
    2024-04-02
  • 解析Android开发优化之:软引用与弱引用的应用
    如果一个对象只具有软引用,那么如果内存空间足够,垃圾回收器就不会回收它;如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用...
    99+
    2022-06-06
    android开发 优化 Android
  • 关于C语言中弱符号与弱引用的实际应用问题
    最近在学习《程序员的自我修养——链接、装载与库》时,get到了一个新的知识点:弱符号与弱引用。书中简短的介绍,让我了解到弱符号的含义以及使用方式。了解我的朋友,应该知道我喜欢将知识...
    99+
    2024-04-02
  • 详解Python中神奇的字符串驻留机制
    目录1 什么是字符串驻留机制2 如何使用字符串驻留机制3 简单拼接驻留, 运行时不驻留4 总结5 全部代码今天有一个初学者在学习Python的时候又整不会了。 原因是以下代码: a ...
    99+
    2023-05-14
    Python字符串驻留机制 Python字符串驻留 Python字符串
  • 详解Python中递归函数的原理与使用
    目录什么是递归函数递归函数的条件定义一个简单的递归函数代码解析内存栈区堆区死递归尾递归实例什么是递归函数 如果一个函数,可以自己调用自己,那么这个函数就是一个递归函数。 递归,递就是...
    99+
    2024-04-02
  • python 标准库原理与用法详解之os.path篇
    os中的path 查看源码会看到,在os.py中有这样几行 if 'posix' in _names: name = 'posix' linesep = '\n'...
    99+
    2024-04-02
  • 一文详解Python中生成器的原理与使用
    目录什么是生成器迭代器和生成器的区别创建方式生成器表达式基本语法生成器函数yield关键字yield和returnyield的使用方法生成器函数的基本使用send的使用可迭代对象的优...
    99+
    2024-04-02
  • 对ThreadLocal内存泄漏及弱引用的理解
    ThreadLocal内存泄漏及弱引用 1.什么是内存泄漏?Entry的key弱引用与泄漏关系 在TreadLocal中内存泄漏是指TreadLocalMap中的Entry中的ke...
    99+
    2024-04-02
  • 详解JWT与Token的应用与原理
    目录JWT的应用Token的组成原理JWT对称加密JWT非对称加密生成私钥和公钥前言:JWT全称“JSON Web Token”,是实现Token的机制。官网...
    99+
    2023-05-16
    JWT应用与原理 Token应用与原理
  • Java中ThreadLocal的用法和原理详解
    目录用法实现原理内存泄漏用法 隔离各个线程间的数据避免线程内每个方法都进行传参,线程内的所有方法都可以直接获取到ThreadLocal中管理的对象。 package com.exam...
    99+
    2023-05-15
    Java ThreadLocal用法 Java ThreadLocal原理 Java ThreadLocal
  • MySQL中索引与视图的用法与区别详解
    前言 本文主要给大家介绍了关于MySQL中索引与视图的使用与区别的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。 索引 一、概述 所有的Mysql列类型都可以被索引。 mys...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作