返回顶部
首页 > 资讯 > 后端开发 > Python >python开发实时可视化仪表盘的示例
  • 420
分享到

python开发实时可视化仪表盘的示例

python可视化python可视化仪表盘 2022-06-02 22:06:09 420人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

本文示例代码已上传至我的GitHub仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程「python+Dash快速WEB应用开发」的

本文示例代码已上传至我的GitHub仓库https://github.com/CNFeffery/DataScienceStudyNotes

1 简介

这是我的系列教程python+Dash快速WEB应用开发」的第十五期,在前面的一系列教程中,我们针对Dash中的各种常用基础概念作了比较详细的介绍,如果前面的教程你有认真学习,那么相信到今天你已经有能力开发初具规模的Dash应用了。

而在Dash生态中还有一系列功能比较特殊但又非常实用的部件,今天的文章我们就来学习这些常用的「特殊部件」。

2 Dash中的常用特殊功能部件

2.1 用Store()来存储数据

在dash_core_components中有着很多功能特殊的部件,Store()就是其中之一,它的功能十分的简单,就是用来存储数据的,譬如存储一些数值、字符串等基础数据类型或者把Python中的列表、字典等作为JSON格式数据存进去。

Store()的主要参数/属性除了id之外,还有:

data,代表其所存放的数据,也是我们编写回调函数时关注的属性;

modified_timestamp,用于记录最后一次data属性被修改的时间戳,通常用不到;

storage_type,用于设置存储数据的生命周期,有3种,storage_type='memory'时生命周期最短,只要页面一刷新,data就会恢复初始状态;storage_type='session'时,只有浏览器被关闭时data才会被重置;而最后一种storage_type='local'时,会将数据存储在本地缓存中,只有手动清除,data才会被重置。

话不多说,直接来看一个直观的例子:

app1.py


import dash
import dash_core_components as dcc
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output

app = dash.Dash(__name__)

app.layout = dbc.Container(
    [
        dbc.FORM(
            [
                dbc.FormGroup(
                    [
                        dbc.Label('storage = "memory"时'),
                        dbc.Input(id='input-memory1', autoComplete='off'),
                        dbc.Input(id='input-memory2', style={'margin-top': '3px'}),
                        dcc.Store(id='data-in-memory')
                    ]
                ),
                dbc.FormGroup(
                    [
                        dbc.Label('storage = "session"时'),
                        dbc.Input(id='input-session1', autoComplete='off'),
                        dbc.Input(id='input-session2', style={'margin-top': '3px'}),
                        dcc.Store(id='data-in-session', storage_type='session')
                    ]
                ),
                dbc.FormGroup(
                    [
                        dbc.Label('storage = "local"时'),
                        dbc.Input(id='input-local1', autoComplete='off'),
                        dbc.Input(id='input-local2', style={'margin-top': '3px'}),
                        dcc.Store(id='data-in-local', storage_type='local')
                    ]
                ),
            ]
        )
    ],
    style={
        'margin-top': '100px',
        'max-width': '600px'
    }
)


# memory对应回调
@app.callback(
    Output('data-in-memory', 'data'),
    Input('input-memory1', 'value')
)
def data_in_memory_save_data(value):
    if value:
        return value

    return dash.no_update


@app.callback(
    Output('input-memory2', 'placeholder'),
    Input('data-in-memory', 'data')
)
def data_in_memory_placeholder(data):
    if data:
        return data

    return dash.no_update


# session对应回调
@app.callback(
    Output('data-in-session', 'data'),
    Input('input-session1', 'value')
)
def data_in_session_save_data(value):
    if value:
        return value

    return dash.no_update


@app.callback(
    Output('input-session2', 'placeholder'),
    Input('data-in-session', 'data')
)
def data_in_session_placeholder(data):
    if data:
        return data

    return dash.no_update


# local对应回调
@app.callback(
    Output('data-in-local', 'data'),
    Input('input-local1', 'value')
)
def data_in_local_save_data(value):
    if value:
        return value

    return dash.no_update


@app.callback(
    Output('input-local2', 'placeholder'),
    Input('data-in-local', 'data')
)
def data_in_local_placeholder(data):
    if data:
        return data

    return dash.no_update


if __name__ == '__main__':
    app.run_server(debug=True)

可以看到,不同storage参数对应的数据,生命周期有着很大的区别:

就是凭借着这种自由存储数据的特性,Store()可以帮助我们完成很多非常实用的功能,我们会在本文最后的例子里进行展示。

2.2 用Interval()实现周期性回调

同样是dash_core_components中的组件,Interval()的功能也很有意思,它可以帮助我们实现周期性自动回调,譬如开发一个实时股价系统,每隔一段时间就从后台获取最新的数据,无需我们手动刷新页面,其主要的参数/属性有:

n_intervals,Interval()的核心属性,所谓的自动更新实际上就是自动对n_intervals的递增过程;

interval,数值型,用于设置每隔多少毫秒对n_intervals的值进行一次递增,默认为1000即1秒;

max_intervals,int型,用于设置在经历多少次递增后,不再继续自动更新,默认为-1即不限制;

disabled,bool型,默认为False,用于设置是否停止递增更新过程,如果说max_intervals控制的过程是for循环的话,disabled就是while循环,我们可以利用它自行编写逻辑在特定的条件下停止Interval()的递增过程。

下面我们从一个伪造数据的股价实时更新系统例子中进一步理解Interval()的作用:

app2.py


import dash
import numpy as np
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output, State

app = dash.Dash(__name__)

app.layout = dbc.Container(
    [
        html.P(
            [
                html.Strong('贵州茅台(600519)'),
                '最新股价:',
                html.Span('2108.94', id='latest-price')
            ]
        ),
        dcc.Interval(id='demo-interval', interval=1000)
    ],
    style={
        'margin-top': '100px'
    }
)


@app.callback(
    [Output('latest-price', 'children'),
     Output('latest-price', 'style')],
    Input('demo-interval', 'n_intervals'),
    State('latest-price', 'children')
)
def fake_price_generator(n_intervals, latest_price):
    fake_price = float(latest_price) + np.random.normal(0, 0.1)

    if fake_price > float(latest_price):
        return f'{fake_price:.2f}', {'color': 'red', 'background-color': 'rgba(195, 8, 26, 0.2)'}

    elif fake_price < float(latest_price):
        return f'{fake_price:.2f}', {'color': 'green', 'background-color': 'rgba(50, 115, 80, 0.2)'}

    return f'{fake_price:.2f}', {'background-color': 'rgba(113, 120, 117, 0.2)'}


if __name__ == '__main__':
    app.run_server(debug=True)

哈哈,是不是非常的实用~

2.3 利用ColorPicker()进行交互式色彩设置

接下来我们要介绍的这个很有意思的部件来自Dash的官方依赖dash_daq,它并不是自带的,我们需要用pip进行安装。

ColorPicker()的功能是渲染出一个交互式的色彩选择部件,使得我们可以更方便更直观地选择色彩值,其主要参数/属性有:

label,字符串或字典,若只传入字符串,则传入的文字会作为渲染出的色彩选择器的标题,若传入字典,其label键值对用于设置标题文本内容,style参数用于自定义CSS样式;

labelPosition,字符型,top时标题会置于顶部,bottom时会置于底部;

size,设置部件整体的像素宽度

value,字典型,作为参数时可以用来设定色彩选择器的初始色彩,作为属性时可以获取当前色彩选择器的选定色彩,hex键值对可以直接获取十六进制色彩值,rgb键对应的值为包含r、g、b和a四个键值对的字典,即构成rgba色彩值的三通道+透明度值。

让我们通过下面这个简单的例子来认识它的工作过程:

app3.py


import dash
import dash_daq as daq
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output

app = dash.Dash(__name__)

app.layout = dbc.Container(
    [
        daq.ColorPicker(
            id='color-picker',
            label={
                'label': '色彩选择器',
                'style': {
                    'font-size': '18px',
                    'font-family': 'SimHei',
                    'font-weight': 'bold'
                }
            },
            size=400,
            value=dict(hex="#120E03")
        ),
        html.P(
            '测试'*100,
            id='demo-p',
            style={
                'margin-top': '20px'
            }
        )
    ],
    style={
        'margin-top': '30px',
        'max-width': '500px'
    }
)

app.clientside_callback(
    """
    function(color) {
        return {'color': color.hex, 'margin-top': '20px'};
    }
    """,
    Output('demo-p', 'style'),
    Input('color-picker', 'value')
)

if __name__ == '__main__':
    app.run_server(debug=True)

动图录制出来因为被压缩了所以色彩区域看起来跟打了码似得:

实际上是这样的:

2.4 利用DashDatetimepicker()进行时间范围选择

接下来我要给大家介绍的这个部件DashDatetimepicker()也是来自第三方库,它基于React-datetime,可以帮助我们创建进行日期选择功能的部件(其实dash-core_components中也有类似功能的DatePickerRange()部件,但是太丑了,而且对中文支持的不好)。

使用pip install dash_datetimepicker完成安装之后,默认的部件月份和星期的名称显示都是英文的,我通过对相关的js源码略加修改之后,便可以使用中文了,大家使用的时候把本期附件中的dash_datetimepicker.min.js放到assets目录下即可。

DashDatetimepicker()使用起来非常简单,除了id之外,我们只需要在回调中获取它的startDate与endDate属性即可捕获到用户设置的日期时间范围(在回调中我们接收到的开始结束时间需要加上8个小时,这是个bug):

app4.py


import dash
import pandas as pd
import dash_datetimepicker
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output

app = dash.Dash(__name__)

app.layout = dbc.Container(
    [
        dash_datetimepicker.DashDatetimepicker(id="datetime-picker"),
        html.H6(id='datetime-output', style={'margin-top': '20px'})
    ],
    style={
        'margin-top': '100px',
        'max-width': '600px'
    }
)


@app.callback(
    Output('datetime-output', 'children'),
    [Input('datetime-picker', 'startDate'),
     Input('datetime-picker', 'endDate')]
)
def datetime_range(startDate, endDate):
    # 修正8小时时间差bug并格式化为字符串
    startDate = (pd.to_datetime(startDate) + pd.Timedelta(hours=8)).strftime('%Y-%m-%d %H:%M')
    endDate = (pd.to_datetime(endDate) + pd.Timedelta(hours=8)).strftime('%Y-%m-%d %H:%M')

    return f'从 {startDate} 到 {endDate}'


if __name__ == "__main__":
    app.run_server(debug=True)

3 动手打造一个实时可视化大屏

在学习完今天的内容之后,我们就可以做一些功能上很amazing的事情——搭建一个实时更新的可视化仪表盘。

思路其实很简单,主要用到今天学习到的Interval()与Store(),原理是先从官网静态的案例中移植js代码到Dash的浏览器端回调中,构建出输入为Store()的data的回调函数;

再利用Interval()的n_intervals触发Store()的data更新,从而实现这套从数据更新到图表更新的链式反应。效果如下:

而代码涉及到多个文件,这里就不直接放出,你可以在文章开头的地址中找到对应本期的附件进行学习。

以上就是python开发实时可视化仪表盘的示例的详细内容,更多关于python开发实时可视化仪表盘的资料请关注编程网其它相关文章!

--结束END--

本文标题: python开发实时可视化仪表盘的示例

本文链接: https://lsjlt.com/news/10565.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • python开发实时可视化仪表盘的示例
    本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程「Python+Dash快速web应用开发」的...
    99+
    2022-06-02
    python 可视化 python 可视化仪表盘
  • 如何用纯Python开发实时可视化仪表盘
    这篇文章主要讲解了“如何用纯Python开发实时可视化仪表盘”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“如何用纯Python开发实时可视化仪表盘”吧!1  简介这是我的系列教程「...
    99+
    2023-06-15
  • python如何实现实时可视化仪表盘
    这篇文章主要介绍python如何实现实时可视化仪表盘,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!python的数据类型有哪些python的数据类型:1. 数字类型,包括int(整型)、long(长整型)和float...
    99+
    2023-06-14
  • Python可视化神器pyecharts绘制仪表盘
    目录仪表盘仪表盘模板系列假期剩余额度任务完成率多色仪表盘仪表盘内部字体添加仪表盘 仪表盘的效果我只能说炫酷而已,如果想要运用在实际的场景中,我其实也不清楚那个场景比较适合,但是pye...
    99+
    2024-04-02
  • Qt仪表盘的实现示例
    目录一、前言二、功能特点三、体验地址四、效果图五、相关代码一、前言 仪表盘在很多汽车和物联网相关的系统中很常用,最直观的其实就是汽车仪表盘,这个以前主要是机械的仪表,现在逐步改成了...
    99+
    2024-04-02
  • 以大热剧《觉醒年代》为例用Python绘制可视化仪表盘
    前言 《觉醒年代》被称为是继《走向共和》后的又一部历史神剧。自开播以来,豆瓣上的评分也是从最初的8.3分飙升到9.2分,并且在最近的上海电视节白玉兰奖中获得多项提名。 数据的可视化...
    99+
    2024-04-02
  • Python制作可视化报表的示例详解
    大家好,我是小F~ 在数据展示中使用图表来分享自己的见解,是个非常常见的方法。 这也是Tableau、Power BI这类商业智能仪表盘持续流行的原因之一,这些工具为数据提供了精美的...
    99+
    2024-04-02
  • Prometheus系统的监控数据可视化和仪表盘功能如何实现
    Prometheus系统的监控数据可视化和仪表盘功能可以通过Grafana来实现。Grafana是一个开源的数据可视化工具,可以与P...
    99+
    2024-03-04
    Prometheus
  • Python实战之疫苗研发情况可视化的示例分析
    这篇文章将为大家详细讲解有关Python实战之疫苗研发情况可视化的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、安装plotly库因为这部分内容主要是用plotly库进行数据动态展示,所以要先...
    99+
    2023-06-15
  • Django显示可视化图表的实践
    一 实战 1 Django_lab\urls.py # -*- coding: utf-8 -*- from django.conf.urls impor...
    99+
    2024-04-02
  • ComponentOne.NET仪表板布局控件如何实现可视化数据大屏展示
    小编给大家分享一下ComponentOne.NET仪表板布局控件如何实现可视化数据大屏展示,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!WinForm 界面控件W...
    99+
    2023-06-03
  • Python实现交通数据可视化的示例代码
    目录1、TransBigData简介2、数据预处理3、数据栅格化4、订单起讫点OD提取与聚合集计5、交互可视化1、TransBigData简介 TransBigData是一个为交通...
    99+
    2023-05-17
    Python交通数据可视化 Python数据可视化 Python可视化
  • python可视化plotly图例设置的示例分析
    这篇文章主要介绍python可视化plotly图例设置的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一、图例(legend)import plotly.io as pioimp...
    99+
    2023-06-29
  • Python实现构建一个仪表板的示例代码
    目录简介内容1.创建一个Python文件2.在终端上运行该文件,在本地机器上显示3.在Heroku上部署仪表板总结这将为我们的团队节省每天重复的数据处理时间...... 简介 如果...
    99+
    2023-03-10
    Python构建仪表板 Python 仪表板
  • golang Websocket开发指南:实现实时数据可视化功能
    Golang Websocket是一种强大的工具,可以实现实时数据可视化功能,允许数据在服务器和浏览器之间双向传输,从而为用户提供丰富的交互体验。在本文中,我们将探讨如何使用Golang Websocket开发实时数据可视化功能。确定需求在...
    99+
    2023-12-09
    Golang 数据可视化 websocket
  • Django如何显示可视化图表的实践
    这篇文章主要介绍Django如何显示可视化图表的实践,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一 实战1 Django_lab\urls.py# -*- coding:&n...
    99+
    2023-06-15
  • 使用Go语言开发实现实时数据可视化的应用
    随着大数据时代的到来,数据的产生和处理变得越来越重要。随之而来的是人们对于实时数据的需求也越来越迫切。因此,实时数据可视化成为了一个非常热门的话题。在实时数据可视化的应用中,使用Go语言进行开发非常合适。Go语言是一种并发编程语言,具有高性...
    99+
    2023-11-20
    实时数据 Go语言 可视化应用
  • pandas实现数据可视化的示例代码
    目录一、概述1.1 plot函数参数1.2 本文用到的数据源说明二、折线图--kind='line'三、柱状图--kind='bar'3.1 各组数据...
    99+
    2024-04-02
  • Python数据处理及可视化的示例分析
    这篇文章主要介绍Python数据处理及可视化的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一、NumPy的初步使用表格是数据的一般表示形式,但对于机器来说是不可理解的,也就是无法辨识的数据,所以我们需要对表...
    99+
    2023-06-29
  • python如何实现股票历史数据可视化示例
    这篇文章主要介绍python如何实现股票历史数据可视化示例,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!投资有风险,选择需谨慎。 股票交易数据分析可直观股市走向,对于如何把握股票行情,快速解读股票交易数据有...
    99+
    2023-06-15
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作